Articles | Volume 15, issue 22
https://doi.org/10.5194/amt-15-6625-2022
https://doi.org/10.5194/amt-15-6625-2022
Research article
 | 
18 Nov 2022
Research article |  | 18 Nov 2022

Radio frequency interference detection and mitigation in the DWD C-band weather radar network

Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz

Related authors

Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023,https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022,https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023,https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary

Cited articles

Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Carroll, J. E., Sanders, F. H., Sole, R. L., and Sanders, G. A.: Case Study: Investigation of Interference into 5 GHz Weather Radars from Unlicensed National Information Infrastructure Devices, Part I, Tech. Rep. TR-11-473, NTIA, https://its.ntia.gov/umbraco/surface/download/publication?reportNumber=11-473.pdf (last access: 2 November 2022), 2010. a, b
Cho, J. Y. N.: A New Radio Frequency Interference Filter for Weather Radars, J. Atmos. Ocean. Tech., 34, 1393–1406, https://doi.org/10.1175/JTECH-D-17-0028.1, 2017. a, b, c
ECC: Report 192; The Current Status of DFS (Dynamic Frequency Selection) In the 5 GHz frequency range, Tech. rep., European Conference of Postal and Telecommunications Administrations (CEPT), Electronic Communications Committee (ECC), Denmark, https://docdb.cept.org/download/729 (last access: 2 November 2022), 2014. a, b
ETSI: Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE directive, ETSI Rep. ETSI EN 301 893 V1.7.1 (2012-06), Tech. rep., ETSI, http://www.etsi.org/deliver/etsi_en/301800_301899/301893/01.07.01_60/en_301893v010701p.pdf (last access: 2 November 2022), 2012. a, b, c, d
Download
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.