Articles | Volume 16, issue 13
https://doi.org/10.5194/amt-16-3459-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-16-3459-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
National Centre for Earth Observation (NCEO), University of Reading, Reading, UK
Robin J. Hogan
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Alessio Bozzo
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
currently at: European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
Nicola L. Pounder
National Centre for Earth Observation (NCEO), University of Reading, Reading, UK
currently at: Assimila Ltd., Reading, UK
Related authors
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025, https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared, and the likelihood of them differing by 10 W m2 defines the closure.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
Atmos. Chem. Phys., 25, 11689–11701, https://doi.org/10.5194/acp-25-11689-2025, https://doi.org/10.5194/acp-25-11689-2025, 2025
Short summary
Short summary
We investigated the impact of the shortwave water vapour continuum absorption on clear-sky shortwave radiative feedback. For current temperatures, the impact is modest (<2%). In a warmer world, continuum-induced uncertainty in estimated feedback would be up to ~5%. Representing continuum absorption with the widely used semi-empirical model in radiative transfer calculations leads to an underestimation of this feedback. Constraining the shortwave continuum will help reduce these discrepancies.
Paolo Andreozzi, Mark D. Fielding, Robin J. Hogan, Richard M. Forbes, Samuel Rémy, Birger Bohn, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3790, https://doi.org/10.5194/egusphere-2025-3790, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols significantly contribute to the Earth’s climate, but models still struggle at representing them. Here we use satellite observations of clouds to improve aerosols in our weather and air-quality model. We show that African wildfires induce too bright simulated clouds and that our model removes too much aerosol from ice-containing clouds. This showcases how our approach effectively targets poorly observed aerosol processes, potentially informing weather forecasting and climate models.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025, https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared, and the likelihood of them differing by 10 W m2 defines the closure.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Johannes Röttenbacher, André Ehrlich, Hanno Müller, Florian Ewald, Anna E. Luebke, Benjamin Kirbus, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024, https://doi.org/10.5194/acp-24-8085-2024, 2024
Short summary
Short summary
Weather prediction models simplify the physical processes related to light scattering by clouds consisting of complex ice crystals. Whether these simplifications are the cause for uncertainties in their prediction can be evaluated by comparing them with measurement data. Here we do this for Arctic ice clouds over sea ice using airborne measurements from two case studies. The model performs well for thick ice clouds but not so well for thin ones. This work can be used to improve the model.
Robin J. Hogan, Anthony J. Illingworth, Pavlos Kollias, Hajime Okamoto, and Ulla Wandinger
Atmos. Meas. Tech., 17, 3081–3083, https://doi.org/10.5194/amt-17-3081-2024, https://doi.org/10.5194/amt-17-3081-2024, 2024
Hanno Müller, André Ehrlich, Evelyn Jäkel, Johannes Röttenbacher, Benjamin Kirbus, Michael Schäfer, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 4157–4175, https://doi.org/10.5194/acp-24-4157-2024, https://doi.org/10.5194/acp-24-4157-2024, 2024
Short summary
Short summary
A weather model is used to compare solar radiation with measurements from an aircraft campaign in the Arctic. Model and observations agree on the downward radiation but show differences in the radiation reflected by the surface and the clouds, which in the model is too low above sea ice and too high above open ocean. The model–observation bias is reduced above open ocean by a realistic fraction of clouds and less cloud liquid water and above sea ice by less dark sea ice and more cloud droplets.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Robin J. Hogan and Marco Matricardi
Geosci. Model Dev., 13, 6501–6521, https://doi.org/10.5194/gmd-13-6501-2020, https://doi.org/10.5194/gmd-13-6501-2020, 2020
Short summary
Short summary
A key component of computer models used to predict weather and climate is the radiation scheme, which calculates how solar and infrared radiation heats and cools the atmosphere and surface, including the important role of greenhouse gases. This paper describes the experimental protocol and large datasets for a new project, CKDMIP, to evaluate and improve the accuracy of the treatment of atmospheric gases in the radiation schemes used worldwide, as well as their computational speed.
Cited articles
Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteor. Soc., 138, 2151–2162, https://doi.org/10.1002/qj.1949, 2012. a
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and
temperature, J. Geophys. Res.-Atmos., 114, D00A23,
https://doi.org/10.1029/2008JD010049, 2009. a, b
Baran, A. J. and Francis, P. N.: On the radiative properties of cirrus cloud
at solar and thermal wavelengths: A test of model consistency using
high-resolution airborne radiance measurements, Q. J. Roy. Meteor. Soc., 130, 763–778, https://doi.org/10.1256/QJ.03.151, 2004. a, b, c
Battaglia, A. and Delanoë, J.: Synergies and complementarities of
CloudSat-CALIPSO snow observations, J. Geophys. Res.-Atmos., 118, 721–731, https://doi.org/10.1029/2012JD018092, 2013. a
Battaglia, A. and Panegrossi, G.: What can we learn from the CloudSat
radiometric mode observations of snowfall over the ice-free ocean?, Remote
Sens., 12, 3285, https://doi.org/10.3390/rs12203285, 2020. a
Beard, K. V.: Terminal Velocity and Shape of Cloud and Precipitation Drops
Aloft, J. Atmos. Sci., 33, 851–864,
https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2, 1976. a, b
Chang, F. L. and Li, Z.: A Near-Global Climatology of Single-Layer and
Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS
Data Using a New Algorithm, J. Climate, 18, 4752–4771,
https://doi.org/10.1175/JCLI3553.1, 2005. a
Cole, J. N. S., Barker, H. W., Qu, Z., Villefranque, N., and Shephard, M. W.: Broadband Radiative Quantities for the EarthCARE Mission: The ACM-COM and ACM-RT Products, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-304, in review, 2022. a, b
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res.-Atmos., 115, D00H29, https://doi.org/10.1029/2009JD012346, 2010. a
Delanoë, J., Protat, A., Testud, J., Bouniol, D., Heymsfield, A. J.,
Bansemer, A., Brown, P. R. A., and Forbes, R. M.: Statistical properties of the normalized ice particle size distribution, J. Geophys. Res.-Atmos., 110, D10201, https://doi.org/10.1029/2004JD005405, 2005. a, b, c
Docter, N., Preusker, R., Filipitsch, F., Kritten, L., Schmidt, F., and Fischer, J.: Aerosol optical depth retrieval from the EarthCARE multi-spectral imager: the M-AOT product, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-150, 2023. a
Donovan, D., van Zadelhoff, G.-J., and Wang, P.: The ATLID L2a profile processor (A-AER, A-EBD, A-TC and A-ICE products), in preparation, 2023a. a
Donovan, D. P., Kollias, P., Velázquez Blázquez, A., and van Zadelhoff, G.-J.: The Generation of EarthCARE L1 Test Data sets Using Atmospheric Model Data Sets, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-384, 2023b. a, b, c, d
Escribano, J., Bozzo, A., Dubuisson, P., Flemming, J., Hogan, R. J., C.-Labonnote, L., and Boucher, O.: A benchmark for testing the accuracy and computational cost of shortwave top-of-atmosphere reflectance calculations in clear-sky aerosol-laden atmospheres, Geosci. Model Dev., 12, 805–827, https://doi.org/10.5194/gmd-12-805-2019, 2019. a
Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., and Chen, X.: Far-infrared surface emissivity and climate, P. Natl. Acad. Sci. USA, 111, 16297–16302, https://doi.org/10.1073/PNAS.1413640111, 2014. a
Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. J.: Parametrization of ice-particle size distributions
for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131, 1997–2017, https://doi.org/10.1256/qj.04.134, 2005. a
Francis, P. N., Hignett, P., and Macke, A.: The retrieval of cirrus cloud
properties from aircraft multi-spectral reflectance measurements during
EUCREX'93, Q. J. Roy. Meteor. Soc., 124, 1273–1291, https://doi.org/10.1002/qj.49712454812, 1998. a, b
Ham, S. H., Kato, S., Rose, F. G., Winker, D., L'Ecuyer, T., Mace, G. G.,
Painemal, D., Sun-Mack, S., Chen, Y., and Miller, W. F.: Cloud occurrences
and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM)
and CloudSat radar-lidar (RL) products, J. Geophys. Res.-Atmos., 122, 8852–8884, https://doi.org/10.1002/2017JD026725, 2017. a
Haynes, J. M., L'Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C.,
Wood, N. B., and Tanelli, S.: Rainfall retrieval over the ocean with
spaceborne W-band radar, J. Geophys. Res.-Atmos., 114, D00A22,
https://doi.org/10.1029/2008JD009973, 2009. a, b, c
Henderson, D. S., L’Ecuyer, T., Stephens, G., Partain, P., and Sekiguchi, M.: A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols,
J. Appl. Meteorol. Clim., 52, 853–871, https://doi.org/10.1175/JAMC-D-12-025.1, 2013. a
Heymsfield, A. J. and Westbrook, C. D.: Advances in the Estimation of Ice
Particle Fall Speeds Using Laboratory and Field Measurements, J. Atmos. Sci., 67, 2469–2482, https://doi.org/10.1175/2010JAS3379.1, 2010. a, b
Hill, P. G., Allan, R. P., Chiu, J. C., Bodas-Salcedo, A., and Knippertz, P.:
Quantifying the Contribution of Different Cloud Types to the Radiation
Budget in Southern West Africa, J. Climate, 31, 5273–5291,
https://doi.org/10.1175/JCLI-D-17-0586.1, 2018. a
Hogan, R. J.: A Variational Scheme for Retrieving Rainfall Rate and Hail
Reflectivity Fraction from Polarization Radar, J. Appl. Meteorol. Clim., 46, 1544–1564, https://doi.org/10.1175/JAM2550.1, 2007. a, b
Hogan, R. J.: Fast Lidar and Radar Multiple-Scattering Models. Part I:
Small-Angle Scattering Using the Photon Variance–Covariance Method,
J. Atmos. Sci., 65, 3621–3635, https://doi.org/10.1175/2008JAS2642.1, 2008. a, b
Hogan, R. J.: Fast Reverse-Mode Automatic Differentiation using Expression
Templates in C++, ACM T. Math. Software, 40, 1–16,
https://doi.org/10.1145/2560359, 2014. a
Hogan, R. J.: Adept 2.0: a combined automatic differentiation and array
library for C++, Zenodo [code], https://doi.org/10.5281/zenodo.1004730, 2017. a, b
Hogan, R. J. and Battaglia, A.: Fast Lidar and Radar Multiple-Scattering
Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream
Approximation, J. Atmos. Sci., 65, 3636–3651,
https://doi.org/10.1175/2008JAS2643.1, 2008. a
Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C. D., Heymsfield, A. J.,
and Eastment, J. D.: Radar Scattering from Ice Aggregates Using the
Horizontally Aligned Oblate Spheroid Approximation, J. Appl. Meteorol. Clim., 51, 655–671, https://doi.org/10.1175/JAMC-D-11-074.1, 2012. a, b
Hogan, R. J., Honeyager, R., Tyynelä, J., and Kneifel, S.: Calculating
the millimetre-wave scattering phase function of snowflakes using the
self-similar Rayleigh-Gans Approximation, Q. J. Roy. Meteor. Soc., 143, 834–844, https://doi.org/10.1002/qj.2968, 2017. a, b
Illingworth, A. J. and Blackman, T. M.: The Need to Represent Raindrop Size
Spectra as Normalized Gamma Distributions for the Interpretation of
Polarization Radar Observations, J. Appl. Meteorol., 41,
286–297, https://doi.org/10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2, 2002. a
Irbah, A., Delanoë, J., van Zadelhoff, G.-J., Donovan, D. P., Kollias, P., Puigdomènech Treserras, B., Mason, S., Hogan, R. J., and Tatarevic, A.: The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products, Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, 2023. a, b, c, d, e, f, g
Kato, S., Sun-Mack, S., Miller, W. F., Rose, F. G., Chen, Y., Minnis, P., and
Wielicki, B. A.: Relationships among cloud occurrence frequency, overlap,
and effective thickness derived from CALIPSO and CloudSat merged cloud
vertical profiles, J. Geophys. Res.-Atmos., 115, D00H28,
https://doi.org/10.1029/2009JD012277, 2010. a
Kato, S., Rose, F. G., Sun-Mack, S., Miller, W. F., Chen, Y., Rutan, D. A.,
Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M.,
Charlock, T. P., Stackhouse, P. W., Xu, K.-M., and Collins, W. D.:
Improvements of top-of-atmosphere and surface irradiance computations with
CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties, J. Geophys. Res.-Atmos., 116, D19209, https://doi.org/10.1029/2011JD016050, 2011. a, b
Khanal, S. and Wang, Z.: Uncertainties in MODIS-Based Cloud Liquid Water Path Retrievals at High Latitudes Due to Mixed-Phase Clouds and Cloud Top Height Inhomogeneity, J. Geophys. Res.-Atmos., 123, 154–11,
https://doi.org/10.1029/2018JD028558, 2018. a
Kollias, P., Puidgomènech Treserras, B., Battaglia, A., Borque, P. C., and Tatarevic, A.: Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products, Atmos. Meas. Tech., 16, 1901–1914, https://doi.org/10.5194/amt-16-1901-2023, 2023. a, b, c, d, e
Lebsock, M. D., L’Ecuyer, T. S., and Stephens, G. L.: Detecting the Ratio of
Rain and Cloud Water in Low-Latitude Shallow Marine Clouds, J. Appl. Meteorol. Clim., 50, 419–432, https://doi.org/10.1175/2010JAMC2494.1, 2011. a, b
L'Ecuyer, T. S. and Stephens, G. L.: An Estimation-Based Precipitation
Retrieval Algorithm for Attenuating Radars, J. Appl. Meteorol.,
41, 272–285, https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2, 2002. a
Leinonen, J., Lebsock, M. D., Stephens, G. L., Suzuki, K., Leinonen, J.,
Lebsock, M. D., Stephens, G. L., and Suzuki, K.: Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS, J. Appl. Meteorol. Clim., 55, 1831–1844, https://doi.org/10.1175/JAMC-D-16-0077.1, 2016. a, b, c, d
Li, H. and Moisseev, D.: Melting Layer Attenuation at Ka-and W-Bands as Derived From Multifrequency Radar Doppler Spectra Observations, Wiley Online Library, 124, 9520–9533, https://doi.org/10.1029/2019JD030316, 2019. a
Liu, D. C. and Nocedal, J.: On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503–528,
https://doi.org/10.1007/BF01589116, 1989. a
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear
Parameters, J. Soc. Ind. Appl. Math., 11, 431–441, https://doi.org/10.1137/0111030, 1963. a
Marshall, J. S. J. and Palmer, W. M. K.: The distribution of raindrops with size, J. Meteorol., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948. a
Mason, S., Hogan, R. J., Donovan, D., van Zadelhoff, G.-J., Kollias, P.,
Treserras, B. P., Qu, Z., Cole, J., Hünerbein, A., and Docter, N.: An
intercomparison of EarthCARE cloud, aerosol and precipitation retrieval
products, in preparation, 2023. a
Mason, S. L., Hogan, R. J., Westbrook, C. D., Kneifel, S., Moisseev, D., and von Terzi, L.: The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow, Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, 2019. a, b, c
Matrosov, S.: Assessment of Radar Signal Attenuation Caused by the Melting
Hydrometeor Layer, IEEE T. Geosci. Remote, 46, 1039–1047, https://doi.org/10.1109/TGRS.2008.915757, 2008. a, b
Matrosov, S., Battaglia, A., and Rodriguez, P.: Effects of multiple scattering on attenuation-based retrievals of stratiform rainfall from CloudSat, J. Atmos. Ocean. Tech., 25, 2199–2208,
https://doi.org/10.1175/2008JTECHA1095.1, 2008. a
Matrosov, S. Y.: Potential for attenuation-based estimations of rainfall rate from CloudSat, Geophys. Res. Lett., 34, L05817,
https://doi.org/10.1029/2006GL029161, 2007. a, b
Miles, N. L., Verlinde, J., and Clothiaux, E. E.: Cloud Droplet Size Distributions in Low-Level Stratiform Clouds, J. Atmos. Sci., 57, 295–311,
https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2, 2000. a, b
Mróz, K., Battaglia, A., Kneifel, S., von Terzi, L., Karrer, M., and Ori, D.: Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study, Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, 2021. a, b
Naud, C. M., Del Genio, A. D., and Bauer, M.: Observational constraints on the cloud thermodynamic phase in midlatitude storms, J. Climate, 19,
5273–5288, https://doi.org/10.1175/JCLI3919.1, 2006. a
Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and
optical thickness retrievals over the Southeast Pacific with VOCALS-REx in
situ measurements, J. Geophys. Res.-Atmos., 116, D24206,
https://doi.org/10.1029/2011JD016155, 2011. a
Pounder, N. L., Hogan, R. J., Várnai, T., Battaglia, A., and Cahalan,
R. F.: A Variational Method to Retrieve the Extinction Profile in Liquid
Clouds Using Multiple-Field-of-View Lidar, J. Appl. Meteorol. Clim., 51, 350–365, https://doi.org/10.1175/JAMC-D-10-05007.1, 2012. a
Qu, Z., Donovan, D. P., Barker, H. W., Cole, J. N. S., Shephard, M. W., and Huijnen, V.: Numerical Model Generation of Test Frames for Pre-launch Studies of EarthCARE’s Retrieval Algorithms and Data Management System, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-300, in review, 2022. a, b, c, d
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and
practice, World Scientific, Singapore, ISBN 978-981-281-371-8, https://doi.org/10.1142/3171, 2000. a, b
Salomonson, V., Barnes, W., Xiong, J., Kempler, S., and Masuoka, E.: An
overview of the Earth Observing System MODIS instrument and associated data
systems performance, in: IEEE International Geoscience and Remote Sensing
Symposium, 24–28 June 2002, Toronto, ON, Canada, IEEE, vol. 2, 1174–1176, https://doi.org/10.1109/IGARSS.2002.1025812, 2002. a
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C.,
L’Ecuyer, T., and Lebsock, M.: CloudSat and CALIPSO within the A-Train:
Ten Years of Actively Observing the Earth System, B. Am. Meteorol. Soc., 99, 569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018. a
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the CloudSat Science Team: The CloudSat Mission and the A-Train, B. Am. Meteorol. Soc., 83, 1771–1790, https://doi.org/10.1175/BAMS-83-12-1771, 2002. a
Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.: The Concept of
“Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud
Physics and Cloud Remote Sensing, J. Appl. Meteorol., 40,
1118–1140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2, 2001. a
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid
calculation of radiative heating rates and photodissociation rates in
inhomogeneous multiple scattering atmospheres, J. Geophys. Res.-Atmos., 94, 16287–16301, https://doi.org/10.1029/jd094id13p16287, 1989.
a
Twomey, S.: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect, Elsevier, ISBN 9780444415479, 1977. a
van Zadelhoff, G.-J., Barker, H. W., Baudrez, E., Bley, S., Clerbaux, N., Cole, J. N. S., de Kloe, J., Docter, N., Domenech, C., Donovan, D. P., Dufresne, J.-L., Eisinger, M., Fischer, J., García-Marañón, R., Haarig, M., Hogan, R. J., Hünerbein, A., Kollias, P., Koopman, R., Madenach, N., Mason, S. L., Preusker, R., Puigdomènech Treserras, B., Qu, Z., Ruiz-Saldaña, M., Shephard, M., Velázquez-Blazquez, A., Villefranque, N., Wandinger, U., Wang, P., and Wehr, T.: EarthCARE level-2 demonstration products from simulated scenes (10.10), Zenodo [data set], https://doi.org/10.5281/zenodo.7117115, 2023. a
Wandinger, U., Baars, H., Engelmann, R., Hünerbein, A., Horn, S., Kanitz, T., Donovan, D., Van Zadelhoff, G.-J., Daou, D., Fischer, J., Von Bismarck, J., Filipitsch, F., Docter, N., Eisinger, M., Lajas, D., and Wehr, T.: HETEAC: the Aerosol Classification Model for EarthCARE, EPJ Web Conf., 119, 01004, https://doi.org/10.1051/epjconf/201611901004, 2016. a
Wandinger, U., Floutsi, A. A., Baars, H., Haarig, M., Ansmann, A., Hünerbein, A., Docter, N., Donovan, D., van Zadelhoff, G.-J., Mason, S., and Cole, J.: HETEAC – the Hybrid End-To-End Aerosol Classification model for EarthCARE, Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, 2023. a, b, c, d
Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M., Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D.: The EarthCARE Mission – Science and System Overview, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1476, 2023. a
Wielicki, B. A., Barkstrom, B. R., Baum, B. A., Charlock, T. P., Green, R. N., Kratz, D. P., Lee Robert, B., Minnis, P., Louis Smith, G., Wong, T., Young, D. F., Cess, R. D., Coakley, J. A., Crommelynck, D. A., Donner, L., Kandel, R., King, M. D., Miller, A. J., Ramanathan, V., Randall, D. A., Stowe, L. L., and Welch, R. M.: Clouds and the earth's radiant energy system (CERES): Algorithm overview, IEEE T. Geosci. Remote, 36,
1127–1141, https://doi.org/10.1109/36.701020, 1998. a
Winker, D. M., Pelon, J. R., and McCormick, M. P.: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, in: Lidar Remote Sensing for Industry and Environment Monitoring III, edited by: Singh, U. N.,
Itabe, T., and Liu, Z., International Society for Optics and Photonics, vol. 4893, p. 1, https://doi.org/10.1117/12.466539, 2003. a
Zhang, Z. and Platnick, S.: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS
spectral bands, J. Geophys. Res.-Atmos., 116, 20215,
https://doi.org/10.1029/2011JD016216, 2011. a
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
We present a method for accurately estimating the contents and properties of clouds, snow, rain,...
Special issue