Articles | Volume 17, issue 9
https://doi.org/10.5194/amt-17-2583-2024
https://doi.org/10.5194/amt-17-2583-2024
Research article
 | 
03 May 2024
Research article |  | 03 May 2024

CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery

Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate

Related authors

Convolutional conditional neural processes for local climate downscaling
Anna Vaughan, Will Tebbutt, J. Scott Hosking, and Richard E. Turner
Geosci. Model Dev., 15, 251–268, https://doi.org/10.5194/gmd-15-251-2022,https://doi.org/10.5194/gmd-15-251-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrievals of water vapour and temperature exploiting the far-infrared: application to aircraft observations in preparation for the FORUM mission
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Richard Siddans, Jonathan Murray, Laura Warwick, and Stuart Fox
Atmos. Meas. Tech., 18, 717–735, https://doi.org/10.5194/amt-18-717-2025,https://doi.org/10.5194/amt-18-717-2025, 2025
Short summary
Global decadal measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared Sounder
Kelley C. Wells, Dylan B. Millet, Jared F. Brewer, Vivienne H. Payne, Karen E. Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
Atmos. Meas. Tech., 18, 695–716, https://doi.org/10.5194/amt-18-695-2025,https://doi.org/10.5194/amt-18-695-2025, 2025
Short summary
Forward model emulator for atmospheric radiative transfer using Gaussian processes and cross validation
Otto Lamminpää, Jouni Susiluoto, Jonathan Hobbs, James McDuffie, Amy Braverman, and Houman Owhadi
Atmos. Meas. Tech., 18, 673–694, https://doi.org/10.5194/amt-18-673-2025,https://doi.org/10.5194/amt-18-673-2025, 2025
Short summary
Developments on a 22 GHz microwave radiometer and reprocessing of 13-year time series for water vapour studies
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
Atmos. Meas. Tech., 18, 555–567, https://doi.org/10.5194/amt-18-555-2025,https://doi.org/10.5194/amt-18-555-2025, 2025
Short summary
Optimal selection of satellite XCO2 images for urban CO2 emission monitoring
Alexandre Danjou, Grégoire Broquet, Andrew Schuh, François-Marie Bréon, and Thomas Lauvaux
Atmos. Meas. Tech., 18, 533–554, https://doi.org/10.5194/amt-18-533-2025,https://doi.org/10.5194/amt-18-533-2025, 2025
Short summary

Cited articles

Aybar, C., Ysuhuaylas, L., Loja, J., Gonzales, K., Herrera, F., Bautista, L., Yali, R., Flores, A., Diaz, L., Cuenca, N., Espinoza, W., Prudencio, F., Llactayo, V., Montero, D., Sudmanns, M., Tiede, D., Mateo-García, G., and Gómez-Chova, L.: CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2, Scientific Data, 9, 782, https://doi.org/10.1038/s41597-022-01878-2, 2022. a
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.11929, 3 June 2020. a
Ehret, T., De Truchis, A., Mazzolini, M., Morel, J.-M., D’aspremont, A., Lauvaux, T., Duren, R., Cusworth, D., and Facciolo, G.: Global tracking and quantification of oil and gas methane emissions from recurrent sentinel-2 imagery, Environ. Sci. Technol., 56, 10517–10529, 2022. a, b, c
Download
Short summary
Methane is a potent greenhouse gas that has been responsible for around 25 % of global warming since the industrial revolution. Consequently identifying and mitigating methane emissions comprise an important step in combating the climate crisis. We develop a new deep learning model to automatically detect methane plumes from satellite images and demonstrate that this can be applied to monitor large methane emissions resulting from the oil and gas industry.
Share