Articles | Volume 17, issue 18
https://doi.org/10.5194/amt-17-5655-2024
https://doi.org/10.5194/amt-17-5655-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Marine cloud base height retrieval from MODIS cloud properties using machine learning

Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic

Related authors

CloudViT: classifying cloud types in global satellite data and in kilometre-resolution simulations using vision transformers
Julien Lenhardt, Johannes Quaas, Dino Sejdinovic, and Daniel Klocke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2724,https://doi.org/10.5194/egusphere-2024-2724, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025,https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025,https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025,https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025,https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary

Cited articles

Ackerman, S. A. and Frey, R.: MODIS Atmosphere L2 Cloud Mask Product (35_L2), NASA MODIS Adaptive Processing System [data set], Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD35_L2.061, 2017. 
Baccianella, S., Esuli, A., and Sebastiani, F.: Evaluation Measures for Ordinal Regression, in: Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 30 November–2 December 2009, IEEE, 283–287, https://doi.org/10.1109/ISDA.2009.230, 2009. 
Baldi, P.: Autoencoders, Unsupervised Learning, and Deep Architectures, in: Proceedings of the International Conference on Machine Learning (ICML), Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, 27, 37–49, https://proceedings.mlr.press/v27/baldi12a.html (last access: 8 February 2023), 2012. 
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. 
Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., and Crewell, S.: Cloud base height retrieval from multi-angle satellite data, Atmos. Meas. Tech., 12, 1841–1860, https://doi.org/10.5194/amt-12-1841-2019, 2019. 
Download
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Share