Articles | Volume 17, issue 18
https://doi.org/10.5194/amt-17-5655-2024
https://doi.org/10.5194/amt-17-5655-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Marine cloud base height retrieval from MODIS cloud properties using machine learning

Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic

Related authors

CloudViT: classifying cloud types in global satellite data and in kilometre-resolution simulations using vision transformers
Julien Lenhardt, Johannes Quaas, Dino Sejdinovic, and Daniel Klocke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2724,https://doi.org/10.5194/egusphere-2024-2724, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary

Cited articles

Ackerman, S. A. and Frey, R.: MODIS Atmosphere L2 Cloud Mask Product (35_L2), NASA MODIS Adaptive Processing System [data set], Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD35_L2.061, 2017. 
Baccianella, S., Esuli, A., and Sebastiani, F.: Evaluation Measures for Ordinal Regression, in: Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 30 November–2 December 2009, IEEE, 283–287, https://doi.org/10.1109/ISDA.2009.230, 2009. 
Baldi, P.: Autoencoders, Unsupervised Learning, and Deep Architectures, in: Proceedings of the International Conference on Machine Learning (ICML), Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, 27, 37–49, https://proceedings.mlr.press/v27/baldi12a.html (last access: 8 February 2023), 2012. 
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. 
Böhm, C., Sourdeval, O., Mülmenstädt, J., Quaas, J., and Crewell, S.: Cloud base height retrieval from multi-angle satellite data, Atmos. Meas. Tech., 12, 1841–1860, https://doi.org/10.5194/amt-12-1841-2019, 2019. 
Download
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.