Articles | Volume 17, issue 24
https://doi.org/10.5194/amt-17-7169-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-7169-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Determination of low-level temperature profiles from microwave radiometer observations during rain
Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
Moritz Lochmann
Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
Pablo Saavedra Garfias
Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
Heike Kalesse-Los
Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany
Related authors
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Andreas Foth, Janek Zimmer, Felix Lauermann, and Heike Kalesse-Los
Atmos. Meas. Tech., 14, 4565–4574, https://doi.org/10.5194/amt-14-4565-2021, https://doi.org/10.5194/amt-14-4565-2021, 2021
Short summary
Short summary
In this paper, we present two micro rain radar-based approaches to discriminate between stratiform and convective precipitation. One is based on probability density functions and the other one is an artificial neural network classification. Both methods agree well, giving similar results. However, the results of the artificial neural network are more reasonable since it is also able to distinguish an inconclusive class, in turn making the stratiform and convective classes more reliable.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Short summary
In this study, we present the vertical aerosol distribution in the pristine region of the southern tip of South America determined by ground-based and spaceborne lidar observations. Most aerosol load is contained within the planetary boundary layer up to about 1200 m. The free troposphere is characterized by a very low aerosol concentration but a frequent occurrence of clouds. Lofted aerosol layers were rarely observed and, when present, were characterized by very low optical thicknesses.
Andreas Foth and Bernhard Pospichal
Atmos. Meas. Tech., 10, 3325–3344, https://doi.org/10.5194/amt-10-3325-2017, https://doi.org/10.5194/amt-10-3325-2017, 2017
Short summary
Short summary
We present a two-step retrieval that provides a continuous time series of water vapour profiles from ground-based remote sensing in a straightforward way to offer a broad application. The retrieval combines the Raman lidar mass mixing ratio and the microwave radiometer brightness temperature. Its application results in reliable water vapour profiles and error estimates also from within and above a cloud during all non-precipitating conditions.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal
Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, https://doi.org/10.5194/acp-15-7753-2015, 2015
Short summary
Short summary
We present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour from a collocated microwave radiometer. These simultaneous observations provide an operational and continuous measurement of water vapour profiles. The stability of the calibration factor allows for the calibration of the lidar even in the presence of clouds. Based on this approach, water vapour profiles can be retrieved during all non-precipitating conditions.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Samuel Kwakye, Heike Kalesse-Los, Maximilian Maahn, Patric Seifert, Roel van Klink, Christian Wirth, and Johannes Quaas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-69, https://doi.org/10.5194/amt-2023-69, 2023
Publication in AMT not foreseen
Short summary
Short summary
Insect numbers in the atmosphere can be calculated using polarimetric weather radar but they have to be identified and separated from other echoes, especially weather phenomena. Here, the separation is demonstrated using three machine-learning algorithms and insect count data from suction traps and the nature of radar measurements of different radar echoes is revealed. Random forest is the best separating algorithm and insect echoes radar measurements are distinct.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Heike Kalesse-Los, Willi Schimmel, Edward Luke, and Patric Seifert
Atmos. Meas. Tech., 15, 279–295, https://doi.org/10.5194/amt-15-279-2022, https://doi.org/10.5194/amt-15-279-2022, 2022
Short summary
Short summary
It is important to detect the vertical distribution of cloud droplets and ice in mixed-phase clouds. Here, an artificial neural network (ANN) previously developed for Arctic clouds is applied to a mid-latitudinal cloud radar data set. The performance of this technique is contrasted to the Cloudnet target classification. For thick/multi-layer clouds, the machine learning technique is better at detecting liquid than Cloudnet, but if lidar data are available Cloudnet is at least as good as the ANN.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Andreas Foth, Janek Zimmer, Felix Lauermann, and Heike Kalesse-Los
Atmos. Meas. Tech., 14, 4565–4574, https://doi.org/10.5194/amt-14-4565-2021, https://doi.org/10.5194/amt-14-4565-2021, 2021
Short summary
Short summary
In this paper, we present two micro rain radar-based approaches to discriminate between stratiform and convective precipitation. One is based on probability density functions and the other one is an artificial neural network classification. Both methods agree well, giving similar results. However, the results of the artificial neural network are more reasonable since it is also able to distinguish an inconclusive class, in turn making the stratiform and convective classes more reliable.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Heike Kalesse, Teresa Vogl, Cosmin Paduraru, and Edward Luke
Atmos. Meas. Tech., 12, 4591–4617, https://doi.org/10.5194/amt-12-4591-2019, https://doi.org/10.5194/amt-12-4591-2019, 2019
Short summary
Short summary
In a cloud, different particles like liquid water droplets and ice particles can exist simultaneously. To study the evolution of cloud particles from cloud top to bottom one has to find out how many different types of particles with different fall velocities are present. This can be done by analyzing the number of peaks in upward-looking cloud radar Doppler spectra. A new machine-learning algorithm (named PEAKO) that determines the number of peaks is introduced and compared to existing methods.
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Short summary
In this study, we present the vertical aerosol distribution in the pristine region of the southern tip of South America determined by ground-based and spaceborne lidar observations. Most aerosol load is contained within the planetary boundary layer up to about 1200 m. The free troposphere is characterized by a very low aerosol concentration but a frequent occurrence of clouds. Lofted aerosol layers were rarely observed and, when present, were characterized by very low optical thicknesses.
Andreas Foth and Bernhard Pospichal
Atmos. Meas. Tech., 10, 3325–3344, https://doi.org/10.5194/amt-10-3325-2017, https://doi.org/10.5194/amt-10-3325-2017, 2017
Short summary
Short summary
We present a two-step retrieval that provides a continuous time series of water vapour profiles from ground-based remote sensing in a straightforward way to offer a broad application. The retrieval combines the Raman lidar mass mixing ratio and the microwave radiometer brightness temperature. Its application results in reliable water vapour profiles and error estimates also from within and above a cloud during all non-precipitating conditions.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Heike Kalesse, Wanda Szyrmer, Stefan Kneifel, Pavlos Kollias, and Edward Luke
Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, https://doi.org/10.5194/acp-16-2997-2016, 2016
Short summary
Short summary
Mixed-phase clouds are ubiquitous. Process-level understanding is needed to address the complexity of mixed-phase clouds and to improve their representation in models. This study illustrates steps to identify the impact of a microphysical process (riming) on cloud Doppler radar observations. It suggests that in situ observations of key ice properties are needed to complement radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations in models.
A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal
Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, https://doi.org/10.5194/acp-15-7753-2015, 2015
Short summary
Short summary
We present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour from a collocated microwave radiometer. These simultaneous observations provide an operational and continuous measurement of water vapour profiles. The stability of the calibration factor allows for the calibration of the lidar even in the presence of clouds. Based on this approach, water vapour profiles can be retrieved during all non-precipitating conditions.
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Analysis of the measurement uncertainty for a 3D wind lidar
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
An improved geolocation methodology for spaceborne radar and lidar systems
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Mitigating Radome Induced Bias in X-Band Weather Radar Polarimetric moments using Adaptive DFT Algorithm
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
GNSS-RO Residual Ionospheric Error (RIE): A New Method and Assessment
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Mid-Atlantic Nocturnal Low-Level Jet Characteristics: A machine learning analysis of radar wind profiles
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
Observations of Tall-Building Wakes Using a Scanning Doppler Lidar
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Forward operator for polarimetric radio occultation measurements
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024, https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Short summary
The Atmospheric Laser Doppler Instrument (ALADIN) on the Aeolus satellite was the first of its kind to measure high-resolution vertical profiles of aerosols and cloud properties from space. We present an algorithm that produces Aeolus lidar surface returns (LSRs), containing useful information for measuring UV reflectivity. Aeolus LSRs matched well with existing UV reflectivity data from other satellites, like GOME-2 and TROPOMI, and demonstrated excellent sensitivity to modeled snow cover.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024, https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back into space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024, https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft), are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024, https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind lidar designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose optimized post-processing for error reduction.
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024, https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Short summary
The paper presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The paper details the technical background of the presented methods and various examples of geolocation analyses, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-155, https://doi.org/10.5194/amt-2024-155, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Accurate KDP estimates are crucial in radar-based applications. We quantify the uncertainties of several publicly available KDP estimation methods for multiple rainfall intensities. We use C-band weather radar observations and employed a self-consistency KDP, estimated from reflectivity and differential reflectivity, as framework for the examination. Our study provides guidance in the performance, uncertainties and optimisation of the methods, focusing mainly on accuracy and robustness.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Thiruvengadam Padmanabhan, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-117, https://doi.org/10.5194/amt-2024-117, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores how the joints in a weather radar's protective cover affect its measurements. We developed a new method to correct these errors, improving the accuracy of the radar's data. Our method was tested during an intense cyclone on Reunion Island, demonstrating significant improvements in data accuracy. This research is crucial for enhancing weather predictions and understanding, particularly in challenging terrains.
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
EGUsphere, https://doi.org/10.5194/egusphere-2024-1045, https://doi.org/10.5194/egusphere-2024-1045, 2024
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground-airborne synergy between the two instruments yielded optimal-sounding results.
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae H. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-51, https://doi.org/10.5194/amt-2024-51, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radio occultation (RO) observations play an important role in monitoring climate changes and numerical weather forecasts. The residual ionospheric error (RIE) in RO measurements is critical to accurately retrieve atmospheric temperature and refractivity. This study shows that RIF impacts on temperature analysis are mainly confined to the polar stratosphere with amplitude of 1–4 K. These results further highlight the need for RO RIE correction in the modern data assimilation systems.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-37, https://doi.org/10.5194/amt-2024-37, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper introduces a machine-learning approach to automatically isolate Nocturnal Low-Level Jets (NLLJs) using observations from Maryland’s Radar Wind Profiler (RWP) network. Initial findings identify 90 south-westerly NLLJs from May to September 2017–2021, showcasing core parameters and jet morphology. The research aims to establish a foundation for understanding the formation mechanisms of Mid-Atlantic NLLJs and their impact on air quality.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
EGUsphere, https://doi.org/10.5194/egusphere-2024-937, https://doi.org/10.5194/egusphere-2024-937, 2024
Short summary
Short summary
A doppler lidar was placed in highly built-up area in London to measure wakes from tall buildings during a period of one year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Cited articles
Araki, K., Murakami, M., Ishimoto, H., and Tajiri, T.: Ground-Based Microwave Radiometer Variational Analysis during No-Rain and Rain Conditions, Sola, 11, 108–112, https://doi.org/10.2151/sola.2015-026, 2015. a
Böck, T., Pospichal, B., and Löhnert, U.: Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling, Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, 2024. a
Cimini, D., Campos, E., Ware, R., Albers, S., Giuliani, G., Oreamuno, J., Joe, P., Koch, S. E., Cober, S., and Westwater, E.: Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics Using Ground-Based Microwave Radiometry, IEEE T. Geosci. Remote, 49, 4959–4969, https://doi.org/10.1109/TGRS.2011.2154337, 2011. a, b, c
Cimini, D., Rosenkranz, P. W., Tretyakov, M. Y., Koshelev, M. A., and Romano, F.: Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals, Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, 2018. a
Crewell, S. and Löhnert, U.: Accuracy of Boundary Layer Temperature Profiles Retrieved With Multifrequency Multiangle Microwave Radiometry, IEEE T. Geosci. Remote, 45, 2195–2201, https://doi.org/10.1109/TGRS.2006.888434, 2007. a, b, c, d
Decker, M. T., Westwater, E. R., and Guiraud, F. O.: Experimental Evaluation of Ground-Based Microwave Radiometric Sensing of Atmospheric Temperature and Water Vapor Profiles, J. Appl. Meteorol. Clim., 17, 1788–1795, https://doi.org/10.1175/1520-0450(1978)017<1788:EEOGBM>2.0.CO;2, 1978. a
Foth, A.: Brightness Temperature Data and Weather Station Data from General Scans of the Microwave Radiometer HATPRO, Zenodo [data set], https://doi.org/10.5281/zenodo.13692454, 2024a. a
Foth, A. and Pospichal, B.: Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer, Atmos. Meas. Tech., 10, 3325–3344, https://doi.org/10.5194/amt-10-3325-2017, 2017. a
Güldner, J. and Spänkuch, D.: Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry, J. Appl. Meteorol. Clim., 38, 981–988, https://doi.org/10.1175/1520-0450(1999)038<0981:ROYRRS>2.0.CO;2, 1999. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 Hourly Data on Pressure Levels from 1940 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Illingworth, A. J., Hogan, R. J., O'Connor, E., Bouniol, D., Brooks, M. E., Delanoé, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J. W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon, J., Piriou, J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M., van Zadelhoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and Wrench, C. L.: Cloudnet: Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations, B. Am. Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007. a
Jensen, M. P., Holdridge, D. J., Survo, P., Lehtinen, R., Baxter, S., Toto, T., and Johnson, K. L.: Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site, Atmos. Meas. Tech., 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016, 2016. a
Karstens, U., Simmer, C., and Ruprecht, E.: Remote Sensing of Cloud Liquid Water, Meteorol. Atmos. Phys., 54, 157–171, https://doi.org/10.1007/BF01030057, 1994. a
Kazama, S., Rose, T., Zimmermann, R., and Zimmermann, R.: A Precision Autocalibrating 7 Channel Radiometer for Environmental Research Applications, J. Remote Sens. Soc. Jpn., 19, 265–273, https://doi.org/10.11440/rssj1981.19.265, 1999. a
Küchler, N., Turner, D. D., Löhnert, U., and Crewell, S.: Calibrating Ground-based Microwave Radiometers: Uncertainty and Drifts, Radio Sci., 51, 311–327, https://doi.org/10.1002/2015RS005826, 2016. a
Larosa, S., Cimini, D., Gallucci, D., Nilo, S. T., and Romano, F.: PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations, Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024, 2024. a
Lehmann, V.: Custom collection of Mwr Level 1c Data from Lindenberg between 16 Jul and 7 Sep 2020, ACTRIS Cloud remote sensing data centre unit (CLU) [data set], https://doi.org/10.60656/e938967bc0524dee, 2023. a
Liebe, H. J., Hufford, G. A., and Cotton, M. G.: Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies below 1000 GHz, in: AGARD Conference Proceedings 542: Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation Electromagnetic Wave Propagation Panel Symposium, Palma de Mallorca, Spain, 17–20 May 1993, https://its.ntia.gov/publications/details.aspx?pub=2670 (last access: 9 December 2024), 1993. a
Löhnert, U. and Crewell, S.: Accuracy of Cloud Liquid Water Path from Ground-Based Microwave Radiometry 1. Dependency on Cloud Model Statistics, Radio Sci., 38, 8041, https://doi.org/10.1029/2002RS002654, 2003. a, b
Löhnert, U. and Maier, O.: Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges, Atmos. Meas. Tech., 5, 1121–1134, https://doi.org/10.5194/amt-5-1121-2012, 2012. a
Löhnert, U., van Meijgaard, E., Baltink, H. K., Groß, S., and Boers, R.: Accuracy Assessment of an Integrated Profiling Technique for Operationally Deriving Profiles of Temperature, Humidity, and Cloud Liquid Water, J. Geophys. Res., 112, D04205, https://doi.org/10.1029/2006JD007379, 2007. a
Maahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace, G. G., and Comstock, J. M.: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know, B. Am. Meteorol. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1, 2020. a, b
Marke, T., Löhnert, U., Tukiainen, S., Siipola, T., and Pospichal, B.: MWRpy: A Python Package for Processing Microwave Radiometer Data, Journal of Open Source Software., 9, 6733, https://doi.org/10.21105/joss.06733, 2024 (data available at: https://github.com/actris-cloudnet/mwrpy, last access: 9 December 2024). a, b
Maschwitz, G., Löhnert, U., Crewell, S., Rose, T., and Turner, D. D.: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa, Atmos. Meas. Tech., 6, 2641–2658, https://doi.org/10.5194/amt-6-2641-2013, 2013. a
Mech, M., Maahn, M., Ori, D., and Orlandi, E.: PAMTRA: Passive and Active Microwave TRAnsfer Tool v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.3582992, 2019. a
Mech, M., Maahn, M., Kneifel, S., Ori, D., Orlandi, E., Kollias, P., Schemann, V., and Crewell, S.: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, 2020. a, b
O'Connor, E.: Custom collection of model data from Lindenberg between 14 Jul and 20 Oct 2020, ACTRIS Cloud remote sensing data centre unit (CLU) [data set], https://doi.org/10.60656/ca8017ee6ef94027, 2023. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding - Theory and Practice, Vol. 2, World Scientific Publishing, https://doi.org/10.1142/3171, 2000. a
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A Network Suitable Microwave Radiometer for Operational Monitoring of the Cloudy Atmosphere, Atmos. Res., 75, 183–200, https://doi.org/10.1016/j.atmosres.2004.12.005, 2005. a, b
Schnitt, S., Foth, A., Kalesse-Los, H., Mech, M., Acquistapace, C., Jansen, F., Löhnert, U., Pospichal, B., Röttenbacher, J., Crewell, S., and Stevens, B.: Ground- and ship-based microwave radiometer measurements during EUREC4A, Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, 2024. a
Simmer, C.: Satellitenfernerkundung Hydrologischer Parameter Der Atmosphäre Mit Mikrowellen, Kovač, ISBN 3860641964, 1994. a
Solheim, F., Godwin, J. R., Westwater, E. R., Han, Y., Keihm, S. J., Marsh, K., and Ware, R.: Radiometric Profiling of Temperature, Water Vapor and Cloud Liquid Water Using Various Inversion Methods, Radio Sci., 33, 393–404, https://doi.org/10.1029/97RS03656, 1998. a
Sun, B., Reale, T., Schroeder, S., Pettey, M., and Smith, R.: On the Accuracy of Vaisala RS41 versus RS92 Upper-Air Temperature Observations, J. Atmos. Ocean. Tech., 36, 635–653, https://doi.org/10.1175/JTECH-D-18-0081.1, 2019. a
Turner, D., Cadeddu, M., Löhnert, U., Crewell, S., and Vogelmann, A.: Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations, IEEE T. Geosci. Remote, 47, 3326–3337, https://doi.org/10.1109/TGRS.2009.2022262, 2009. a
Walbröl, A., Crewell, S., Engelmann, R., Orlandi, E., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Maturilli, M., and Ebell, K.: Atmospheric Temperature, Water Vapour and Liquid Water Path from Two Microwave Radiometers during MOSAiC, Sci Data, 9, 534, https://doi.org/10.1038/s41597-022-01504-1, 2022. a
Wandinger, U.: Raman Lidar, in: Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere, in: Springer Series in Optical Sciences, edited by: Weitkamp, C., Springer Berlin/Heidelberg, 102, 241–271, ISBN 0-387-40075-3, 2005. a
Ware, R., Cimini, D., Herzegh, P., Marzano, F., Vivekanandan, J., and Westwater, E.: Ground-Based Microwave Radiometer Measurements during Preicipitation, in: 8th Specialst Meeting on Microwave Radiometry, Rome, Italy, 24–27 February 2004, p. 3, 2004. a
Ware, R., Cimini, D., Campos, E., Giuliani, G., Albers, S., Nelson, M., Koch, S. E., Joe, P., and Cober, S.: Thermodynamic and Liquid Profiling during the 2010 Winter Olympics, Atmos. Res., 132–133, 278–290, https://doi.org/10.1016/j.atmosres.2013.05.019, 2013. a
Westwater, E. R., Crewell, S., Mätzler, C., and Cimini, D.: Principles of Surface-Based Microwave and Millimeter Wave Radiometric Remote Sensing of the Troposphere, Quad. Soc. Ital. Elettromagnetismo, 1, 50–90, 2005. a
Xu, G., Ware, R. S., Zhang, W., Feng, G., Liao, K., and Liu, Y.: Effect of Off-Zenith Observations on Reducing the Impact of Precipitation on Ground-Based Microwave Radiometer Measurement Accuracy, Atmos. Res., 140–141, 85–94, https://doi.org/10.1016/j.atmosres.2014.01.021, 2014. a, b
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. We present a method based on a selection of specific frequencies and elevation angles from microwave radiometer observations. A comparison with a numerical weather prediction model shows the presented method allows low-level temperature profiles during rain to be resolved, with rain rates of up to 2.5 mm h−1,, which was not possible before with state-of-the-art retrievals.
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature...