Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution temperature profiling in the Π Chamber: variability of statistical properties of temperature fluctuations
Institute of Geophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-293 Warsaw, Poland
Kamal Kant Chandrakar
Mesoscale and Microscale Meteorology Laboratory, NSF National Center for Atmospheric Research, 3090 Center Green Drive, Boulder, CO 80301, USA
Raymond A. Shaw
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Jesse C. Anderson
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Will Cantrell
Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
Szymon P. Malinowski
Institute of Geophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-293 Warsaw, Poland
Related authors
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024, https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Short summary
In this article, we demonstrate the feasibility of applying advanced radar technology to detect liquid droplets generated in the cloud chamber. Specifically, we show that using radar with centimeter-scale resolution, single drizzle drops with a diameter larger than 40 µm can be detected. This study demonstrates the applicability of remote sensing instruments in laboratory experiments and suggests new applications of ultrahigh-resolution radar for atmospheric sensing.
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023, https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Short summary
Using computer simulations of water, we find that water under tension freezes more easily than under normal conditions. A linear equation describes how freezing temperature increases with tension. Accordingly, simulations show that naturally occurring tension in water capillary bridges leads to higher freezing temperatures. This work is an early step in determining if atmospheric cloud droplets freeze due to naturally occurring tension, for example, during processes such as droplet collisions.
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023, https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
Short summary
In this paper we evaluate the low-cost Alphasense OPC-N3 optical particle counter for measurements of fog microphysics. We compare OPC-N3 with the Oxford Lasers VisiSize D30. This work is significant because OPC-N3 can be used with drones for vertical profiles in fog.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022, https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary
Short summary
To compare two instruments, a VisiSize D30 shadowgraph system and a phase Doppler interferometer (PDI-FPDR), we performed a series of measurements of cloud droplet size and number concentration in orographic clouds. After applying essential modifications and filters to the data, the results from the two instruments showed better agreement in droplet sizing and velocimetry than droplet number concentration or liquid water content. Discrepancies were observed for droplets smaller than 13 µm.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jesse C. Anderson, Subin Thomas, Prasanth Prabhakaran, Raymond A. Shaw, and Will Cantrell
Atmos. Meas. Tech., 14, 5473–5485, https://doi.org/10.5194/amt-14-5473-2021, https://doi.org/10.5194/amt-14-5473-2021, 2021
Short summary
Short summary
Fluctuations due to turbulence in Earth's atmosphere can play a role in how many droplets a cloud has and, eventually, whether that cloud rains or evaporates. We study such processes in Michigan Tech's cloud chamber. Here, we characterize the turbulent and large-scale motions of air in the chamber, measuring the spatial and temporal distributions of temperature and water vapor, which we can combine to get the distribution of relative humidity, which governs cloud formation and dissipation.
Jakub L. Nowak, Holger Siebert, Kai-Erik Szodry, and Szymon P. Malinowski
Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, https://doi.org/10.5194/acp-21-10965-2021, 2021
Short summary
Short summary
Turbulence properties in two cases of a marine stratocumulus-topped boundary layer have been compared using high-resolution helicopter-borne in situ measurements. In the coupled one, small-scale turbulence was close to isotropic and reasonably followed inertial range scaling according to Kolmogorov theory. In the decoupled one, turbulence was more anisotropic and the scaling deviated from theory. This was more pronounced in the cloud and subcloud layers in comparison to the surface mixed layer.
Jakub L. Nowak, Moein Mohammadi, and Szymon P. Malinowski
Atmos. Meas. Tech., 14, 2615–2633, https://doi.org/10.5194/amt-14-2615-2021, https://doi.org/10.5194/amt-14-2615-2021, 2021
Short summary
Short summary
A commercial instrument that characterizes sprays via shadowgraphy imaging was applied to measure the number concentration and size distribution of cloud droplets. Laboratory and field tests were performed to verify the resolution, detection reliability and sizing accuracy. We developed a correction to the data processing method which improves the estimation of cloud microphysical properties. The paper concludes with recommendations concerning the use of the instrument in cloud physics studies.
Cited articles
Ahlers, G., Bodenschatz, E., Hartmann, R., He, X., Lohse, D., Reiter, P., Stevens, R. J. A. M., Verzicco, R., Wedi, M., Weiss, S., Zhang, X., Zwirner, L., and Shishkina, O.: Aspect ratio dependence of heat transfer in a cylindrical Rayleigh-Bénard cell, Phys. Rev. Lett., 128, 084501, https://doi.org/10.1103/PhysRevLett.128.084501, 2022. a
Alexakis, A.: Quasi-two-dimensional turbulence, Reviews of Modern Plasma Physics, 7, 31, https://doi.org/10.1007/s41614-023-00134-3, 2023. a
Alexakis, A. and Biferale, L.: Cascades and transitions in turbulent flows, Phys. Rep., 767–769, 1–101, https://doi.org/10.1016/j.physrep.2018.08.001, 2018. a, b
Ashkenazi, S. and Steinberg, V.: Spectra and statistics of velocity and temperature fluctuations in turbulent convection, Phys. Rev. Lett., 83, 4760–4763, https://doi.org/10.1103/PhysRevLett.83.4760, 1999. a
Bailon-Cuba, J., Emran, M. S., and Schumacher, J.: Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection, J. Fluid Mech., 655, 152–173, https://doi.org/10.1017/S0022112010000820, 2010. a
Blass, A., Verzicco, R., Lohse, D., Stevens, R. J. A. M., and Krug, D.: Flow organisation in laterally unconfined Rayleigh–Bénard turbulence, J. Fluid Mech., 906, A26, https://doi.org/10.1017/jfm.2020.797, 2021. a
Brown, E. and Ahlers, G.: Large-scale circulation model for turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 98, 134501, https://doi.org/10.1103/PhysRevLett.98.134501, 2007. a
Brown, E. and Ahlers, G.: The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection, J. Fluid Mech., 638, 383–400, https://doi.org/10.1017/S0022112009991224, 2009. a, b
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928, 2002. a
Buaria, D. and Sreenivasan, K. R.: Dissipation range of the energy spectrum in high Reynolds number turbulence, Phys. Rev. Fluids, 5, 092601, https://doi.org/10.1103/PhysRevFluids.5.092601, 2020. a
Castaing, B.: Scaling of turbulent spectra, Phys. Rev. Lett., 65, 3209–3209, https://doi.org/10.1103/PhysRevLett.65.3209, 1990. a
Chandrakar, K. K., Cantrell, W., Kostinski, A. B., and Shaw, R. A.: Dispersion aerosol indirect effect in turbulent clouds: laboratory measurements of effective radius, Geophys. Res. Lett., 45, 10,738–10,745, https://doi.org/10.1029/2018GL079194, 2018a. a
Chandrakar, K. K., Cantrell, W., and Shaw, R. A.: Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects, J. Atmos. Sci., 75, 3191–3209, https://doi.org/10.1175/JAS-D-18-0006.1, 2018b. a, b
Chandrakar, K. K., Saito, I., Yang, F., Cantrell, W., Gotoh, T., and Shaw, R. A.: Droplet size distributions in turbulent clouds: experimental evaluation of theoretical distributions, Q. J. Roy. Meteor. Soc., 146, 483–504, https://doi.org/10.1002/qj.3692, 2020. a
Chandrakar, K. K., Morrison, H., Grabowski, W. W., Bryan, G. H., and Shaw, R. A.: Supersaturation variability from scalar mixing: evaluation of a new subgrid-scale model using direct numerical simulations of turbulent Rayleigh–Bénard convection, J. Atmos. Sci., 79, 1191–1210, https://doi.org/10.1175/JAS-D-21-0250.1, 2022. a
Chandrakar, K. K., Morrison, H., and Shaw, R. A.: Lagrangian and Eulerian supersaturation statistics in turbulent cloudy Rayleigh–Bénard convection: applications for LES subgrid modeling, J. Atmos. Sci., 80, 2261–2285, https://doi.org/10.1175/JAS-D-22-0256.1, 2023. a, b
Chang, K., Bench, J., Brege, M., Cantrell, W., Chandrakar, K., Ciochetto, D., Mazzoleni, C., Mazzoleni, L. R., Niedermeier, D., and Shaw, R. A.: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: the Π chamber, B. Am. Meteorol. Soc., 97, 2343–2358, https://doi.org/10.1175/BAMS-D-15-00203.1, 2016. a, b
Chen, C. H. and Bhaganagar, K.: New findings in vorticity dynamics of turbulent buoyant plumes, Phys. Fluids, 33, 115104, https://doi.org/10.1063/5.0065322, 2021. a
Chen, C. H. and Bhaganagar, K.: Energetics of buoyancy-generated turbulent flows with active scalar: pure buoyant plume, J. Fluid Mech., 954, A23, https://doi.org/10.1017/jfm.2022.1011, 2023. a
Chen, C. H. and Bhaganagar, K.: Turbulent cascading in Buoyant plumes, Environ. Fluid Mech., 24, 991–1003, https://doi.org/10.1007/s10652-023-09963-9, 2024. a
Chen, J., Yin, Z.-X., and Zou, H.-Y.: Visualization of thermal structures in turbulent Rayleigh-Bénard convection, in: Proceedings 18th International Symposium on Flow Visualization (ISFV18), Zurich, Switzerland, 26–29 June 2018, edited by: Rösgen, T., ETH Zurich, https://doi.org/10.3929/ethz-b-000279184, 2018. a
Chillà, F. and Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35, 58, https://doi.org/10.1140/epje/i2012-12058-1, 2012. a
Chillá, F., Ciliberto, S., Innocenti, C., and Pampaloni, E.: Boundary layer and scaling properties in turbulent thermal convection, Nuovo Ciment. D, 15, 1229–1249, https://doi.org/10.1007/BF02451729, 1993. a
Cioni, S., Ciliberto, S., and Sommeria, J.: Temperature structure functions in turbulent convection at low Prandtl number, Europhys. Lett., 32, 413, https://doi.org/10.1209/0295-5075/32/5/006, 1995. a
Dabbagh, F., Trias, F. X., Gorobets, A., and Oliva, A.: Flow topology dynamics in a three-dimensional phase space for turbulent Rayleigh-Bénard convection, Phys. Rev. Fluids, 5, 024603, https://doi.org/10.1103/PhysRevFluids.5.024603, 2020. a
De, A. K., Eswaran, V., and Mishra, P. K.: Dynamics of plumes in turbulent Rayleigh–Bénard convection, Eur. J. Mech. B-Fluid., 72, 164–178, https://doi.org/10.1016/j.euromechflu.2018.05.007, 2018. a, b
de la Torre Juárez, M., Chavez, A., Tamppari, L. K., Munguira, A., Martínez, G., Hueso, R., Chide, B., Murdoch, N., Stott, A. E., Navarro, S., Sánchez-Lavega, A., Orton, G. S., Viúdez-Moreiras, D., Banfield, D. J., and Rodríguez-Manfredi, J. A.: Diurnal cycle of rapid air temperature fluctuations at Jezero Crater: probability distributions, exponential tails, scaling, and intermittency, J. Geophys. Res.-Planet., 128, e2022JE007458, https://doi.org/10.1029/2022JE007458, 2023. a
Desai, N., Chandrakar, K. K., Chang, K., Cantrell, W., and Shaw, R. A.: Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud, J. Atmos. Sci., 75, 189–201, https://doi.org/10.1175/JAS-D-17-0158.1, 2018. a
Desai, N., Chandrakar, K. K., Kinney, G., Cantrell, W., and Shaw, R. A.: Aerosol-mediated glaciation of mixed-phase clouds: steady-state laboratory measurements, Geophys. Res. Lett., 46, 9154–9162, https://doi.org/10.1029/2019GL083503, 2019. a
de Wit, X. M., van Kan, A., and Alexakis, A.: Bistability of the large-scale dynamics in quasi-two-dimensional turbulence, J. Fluid Mech., 939, R2, https://doi.org/10.1017/jfm.2022.209, 2022. a
du Puits, R.: Time-resolved measurements of the local wall heat flux in turbulent Rayleigh–Bénard convection, Int. J. Heat Mass Tran., 188, 122649, https://doi.org/10.1016/j.ijheatmasstransfer.2022.122649, 2022. a
du Puits, R.: Thermal boundary layers in turbulent Rayleigh-Bénard convection with rough and smooth plates: a one-to-one comparison, Phys. Rev. Fluids, 9, 023501, https://doi.org/10.1103/PhysRevFluids.9.023501, 2024. a
du Puits, R., Resagk, C., and Thess, A.: Thermal boundary layers in turbulent Rayleigh–Bénard convection at aspect ratios between 1 and 9, New J. Phys., 15, 013040, https://doi.org/10.1088/1367-2630/15/1/013040, 2013. a
Eidelman, A., Elperin, T., Gluzman, I., and Golbraikh, E.: Helicity of mean and turbulent flow with coherent structures in Rayleigh-Bénard convective cell, Phys. Fluids, 26, 065103, https://doi.org/10.1063/1.4881939, 2014. a
Fan, Y., Zhao, Y., Torres, J. F., Xu, F., Lei, C., Li, Y., and Carmeliet, J.: Natural convection over vertical and horizontal heated flat surfaces: a review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications, Phys. Fluids, 33, 101301, https://doi.org/10.1063/5.0065125, 2021. a
Fernando, H. and Smith IV, D.: Vortex structures in geophysical convection, Eur. J. Mech. B-Fluid., 20, 437–470, https://doi.org/10.1016/S0997-7546(01)01129-3, 2001. a
Foroozani, N., Niemela, J. J., Armenio, V., and Sreenivasan, K. R.: Reorientations of the large-scale flow in turbulent convection in a cube, Phys. Rev. E, 95, 033107, https://doi.org/10.1103/PhysRevE.95.033107, 2017. a
Funfschilling, D., Brown, E., and Ahlers, G.: Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection, J. Fluid Mech., 607, 119–139, https://doi.org/10.1017/S0022112008001882, 2008. a
Goluskin, D.: Internally Heated Convection and Rayleigh-Bénard Convection, SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, https://doi.org/10.1007/978-3-319-23941-5, 2015. a
Gotoh, T. and Yeung, P.: Ten Chapters in Turbulence, Cambridge University Press, https://doi.org/10.1017/CBO9781139032810, 87–131, 2012. a, b
Grosz, R., Chandrakar, K. K., Shaw, R. A., Anderson, J. C., Cantrell, W., and Malinowski, S. P.: High-resolution temperature profiling in the Π Chamber: variability of statistical properties of temperature fluctuations, Michigan Tech [data set], https://doi.org/10.37099/mtu.dc.all-datasets/58, 2025. a
Guo, S.-X., Zhou, S.-Q., Qu, L., Cen, X.-R., and Lu, Y.-Z.: Evolution and statistics of thermal plumes in tilted turbulent convection, Int. J. Heat Mass Tran., 111, 933–942, https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.039, 2017. a
Haman, K. E., Makulski, A., Malinowski, S. P., and Busen, R.: A new ultrafast thermometer for airborne measurements in clouds, J. Atmos. Ocean. Tech., 14, 217–227, https://doi.org/10.1175/1520-0426(1997)014<0217:ANUTFA>2.0.CO;2, 1997. a
Haman, K. E., Malinowski, S. P., and Struś, B. D.: Two new types of ultrafast aircraft thermometer, J. Atmos. Ocean. Tech., 18, 117–134, https://doi.org/10.1175/1520-0426(2001)018<0117:TNTOUA>2.0.CO;2, 2001. a
He, X., van Gils, D. P. M., Bodenschatz, E., and Ahlers, G.: Logarithmic spatial variations and universal f−1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 112, 174501, https://doi.org/10.1103/PhysRevLett.112.174501, 2014. a
He, X., Wang, Y., and Tong, P.: Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection, Phys. Rev. Fluids, 3, 052401, https://doi.org/10.1103/PhysRevFluids.3.052401, 2018. a
Khurshid, S., Donzis, D. A., and Sreenivasan, K. R.: Energy spectrum in the dissipation range, Phys. Rev. Fluids, 3, 082601, https://doi.org/10.1103/PhysRevFluids.3.082601, 2018. a
Krug, D., Lohse, D., and Stevens, R. J. A. M.: Coherence of temperature and velocity superstructures in turbulent Rayleigh–Bénard flow, J. Fluid Mech., 887, A2, https://doi.org/10.1017/jfm.2019.1054, 2020. a
Kukharets, V. P. and Nalbandyan, H. G.: Temperature fluctuations in the atmospheric surface layer over the thermally inhomogeneous underlying surface, Izv. Atmos. Ocean. Phy.+., 42, 456–462, https://doi.org/10.1134/S0001433806040050, 2006. a
Kumala, W., Haman, K. E., Kopec, M. K., Khelif, D., and Malinowski, S. P.: Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST), Atmos. Meas. Tech., 6, 2043–2054, https://doi.org/10.5194/amt-6-2043-2013, 2013. a
Kumar, A. and Verma, M. K.: Applicability of Taylor's hypothesis in thermally driven turbulence, Roy. Soc. Open Sci., 5, 172152, https://doi.org/10.1098/rsos.172152, 2018. a, b, c
Lakkaraju, R., Stevens, R. J. A. M., Verzicco, R., Grossmann, S., Prosperetti, A., Sun, C., and Lohse, D.: Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection, Phys. Rev. E, 86, 056315, https://doi.org/10.1103/PhysRevE.86.056315, 2012. a, b
Lenschow, D. H., Mann, J., and Kristensen, L.: How long is long enough when measuring fluxes and other turbulence statistics?, J. Atmos. Ocean. Tech., 11, 661–673, https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2, 1994. a
Liu, Y. and Ecke, R. E.: Local temperature measurements in turbulent rotating Rayleigh-Bénard convection, Phys. Rev. E, 84, 016311, https://doi.org/10.1103/PhysRevE.84.016311, 2011. a
Lohse, D. and Shishkina, O.: Ultimate Rayleigh-Bénard turbulence, Rev. Mod. Phys., 96, 035001, https://doi.org/10.1103/RevModPhys.96.035001, 2024. a
Lohse, D. and Xia, K.-Q.: Small-scale properties of turbulent Rayleigh-Bénard convection, Annu. Rev. Fluid Mech., 42, 335–364, https://doi.org/10.1146/annurev.fluid.010908.165152, 2010. a
MacMillan, T., Shaw, R. A., Cantrell, W. H., and Richter, D. H.: Direct numerical simulation of turbulence and microphysics in the Pi Chamber, Phys. Rev. Fluids, 7, 020501, https://doi.org/10.1103/PhysRevFluids.7.020501, 2022. a
Mishra, P. K., De, A. K., Verma, M. K., and Eswaran, V.: Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection, J. Fluid Mech., 668, 480–499, https://doi.org/10.1017/S0022112010004830, 2011. a
Moller, S., Resagk, C., and Cierpka, C.: Long-time experimental investigation of turbulent superstructures in Rayleigh–Bénard convection by noninvasive simultaneous measurements of temperature and velocity fields, Exp. Fluids, 62, 64, https://doi.org/10.1007/s00348-020-03107-1, 2021. a, b
Musacchio, S. and Boffetta, G.: Condensate in quasi-two-dimensional turbulence, Phys. Rev. Fluids, 4, 022602, https://doi.org/10.1103/PhysRevFluids.4.022602, 2019. a
Niedermeier, D., Chang, K., Cantrell, W., Chandrakar, K. K., Ciochetto, D., and Shaw, R. A.: Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh-Bénard turbulence, Phys. Rev. Fluids, 3, 083501, https://doi.org/10.1103/PhysRevFluids.3.083501, 2018. a
Niemela, J. J., Skrbek, L., Sreenivasan, K. R., and Donnelly, R. J.: Turbulent convection at very high Rayleigh numbers, Nature, 404, 837–840, https://doi.org/10.1038/35009036, 2000. a, b
Nowak, J. L., Kumala, W., Kwiatkowski, J., Kwiatkowski, K., Czyżewska, D., Karpińska, K., and Malinowski, S. P.: UltraFast Thermometer 2.0 – new temperature sensor for airborne applications and its performance during ACORES 2017, EGU General Assembly, Vienna, Austria, 8–13 April 2018, EGU2018-12492, 2018. a
Nowak, J. L., Siebert, H., Szodry, K.-E., and Malinowski, S. P.: Coupled and decoupled stratocumulus-topped boundary layers: turbulence properties, Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, 2021. a
Olsthoorn, J.: Accounting for surface temperature variations in Rayleigh-Bénard convection, Phys. Rev. Fluids, 8, 033501, https://doi.org/10.1103/PhysRevFluids.8.033501, 2023. a
Pandey, A., Scheel, J. D., and Schumacher, J.: Turbulent superstructures in Rayleigh-Bénard convection, Nat. Commun., 9, 2118, https://doi.org/10.1038/s41467-018-04478-0, 2018. a, b
Pawar, S. S. and Arakeri, J. H.: Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence, Phys. Fluids, 28, 065103, https://doi.org/10.1063/1.4953858, 2016. a
Plunian, F., Teimurazov, A., Stepanov, R., and Verma, M. K.: Inverse cascade of energy in helical turbulence, J. Fluid Mech., 895, A13, https://doi.org/10.1017/jfm.2020.307, 2020. a
Prabhakaran, P., Shawon, A. S. M., Kinney, G., Thomas, S., Cantrell, W., and Shaw, R. A.: The role of turbulent fluctuations in aerosol activation and cloud formation, P. Natl. Acad. Sci. USA, 117, 16831–16838, https://doi.org/10.1073/pnas.2006426117, 2020. a
Reiter, P., Shishkina, O., Lohse, D., and Krug, D.: Crossover of the relative heat transport contributions of plume ejecting and impacting zones in turbulent Rayleigh-Bénard convection, Europhys. Lett., 134, 34002, https://doi.org/10.1209/0295-5075/134/34002, 2021. a
Rieutord, M., Roudier, T., Rincon, F., Malherbe, J.-M., Meunier, N., Berger, T., and Frank, Z.: On the power spectrum of solar surface flows, Astron. Astrophys., 512, A4, https://doi.org/10.1051/0004-6361/200913303, 2010. a
Sakievich, P., Peet, Y., and Adrian, R.: Large-scale thermal motions of turbulent Rayleigh–Bénard convection in a wide aspect-ratio cylindrical domain, Int. J. Heat Fluid Fl., 61, 183–196, https://doi.org/10.1016/j.ijheatfluidflow.2016.04.011, 2016. a
Salesky, S. T., Gillis, K., Anderson, J., Helman, I., Cantrell, W., and Shaw, R. A.: Modeling the subgrid scale scalar variance: a priori tests and application to supersaturation in cloud turbulence, J. Atmos. Sci., 81, 839–853, https://doi.org/10.1175/JAS-D-23-0163.1, 2024. a, b
Shevkar, P. P., Vishnu, R., Mohanan, S. K., Koothur, V., Mathur, M., and Puthenveettil, B. A.: On separating plumes from boundary layers in turbulent convection, J. Fluid Mech., 941, A5, https://doi.org/10.1017/jfm.2022.271, 2022. a
Shi, N., Emran, M. S., and Schumacher, J.: Boundary layer structure in turbulent Rayleigh–Bénard convection, J. Fluid Mech., 706, 5–33, https://doi.org/10.1017/jfm.2012.207, 2012. a
Shishkina, O.: Rayleigh-Bénard convection: the container shape matters, Phys. Rev. Fluids, 6, 090502, https://doi.org/10.1103/PhysRevFluids.6.090502, 2021. a
Shishkina, O., Horn, S., Emran, M. S., and Ching, E. S. C.: Mean temperature profiles in turbulent thermal convection, Phys. Rev. Fluids, 2, 113502, https://doi.org/10.1103/PhysRevFluids.2.113502, 2017. a
Siebert, H., Lehmann, K., and Wendisch, M.: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer, J. Atmos. Sci., 63, 1451–1466, https://doi.org/10.1175/JAS3687.1, 2006. a
Siebert, H., Szodry, K. E., Egerer, U., Wehner, B., Henning, S., Chevalier, K., Lückerath, J., Welz, O., Weinhold, K., Lauermann, F., Gottschalk, M., Ehrlich, A., Wendisch, M., Fialho, P., Roberts, G., Allwayin, N., Schum, S., Shaw, R. A., Mazzoleni, C., Mazzoleni, L., Nowak, J. L., Malinowski, S. P., Karpinska, K., Kumala, W., Czyzewska, D., Luke, E. P., Kollias, P., Wood, R., and Mellado, J. P.: Observations of aerosol, cloud, turbulence, and radiation properties at the top of the Marine Boundary Layer over the Eastern North Atlantic Ocean: The ACORES Campaign, B. Am. Meteorol. Soc., 102, E123–E147, https://doi.org/10.1175/BAMS-D-19-0191.1, 2021. a
Sreenivasan, K. R.: Turbulent mixing: a perspective, P. Natl. Acad. Sci. USA, 116, 18175–18183, https://doi.org/10.1073/pnas.1800463115, 2019. a, b
Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet , P.-E., Brügmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M. K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Zöger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, 2021. a
Stevens, R. J. A. M., Blass, A., Zhu, X., Verzicco, R., and Lohse, D.: Turbulent thermal superstructures in Rayleigh-Bénard convection, Phys. Rev. Fluids, 3, 041501, https://doi.org/10.1103/PhysRevFluids.3.041501, 2018. a
van der Poel, E. P., Ostilla-Mónico, R., Verzicco, R., Grossmann, S., and Lohse, D.: Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 115, 154501, https://doi.org/10.1103/PhysRevLett.115.154501, 2015. a
Vasiliev, A., Sukhanovskii, A., Frick, P., Budnikov, A., Fomichev, V., Bolshukhin, M., and Romanov, R.: High Rayleigh number convection in a cubic cell with adiabatic sidewalls, Int. J. Heat Mass Tran., 102, 201–212, https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.015, 2016. a
Vishnu, V. T., De, A. K., and Mishra, P. K.: Dynamics of large-scale circulation and energy transfer mechanism in turbulent Rayleigh–Bénard convection in a cubic cell, Phys. Fluids, 32, 095115, https://doi.org/10.1063/5.0021667, 2020. a
Vishnu, V. T., De, A. K., and Mishra, P. K.: Statistics of thermal plumes and dissipation rates in turbulent Rayleigh-Bénard convection in a cubic cell, Int. J. Heat Mass Tran., 182, 121995, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121995, 2022. a
Wagner, S., Shishkina, O., and Wagner, C.: Boundary layers and wind in cylindrical Rayleigh–Bénard cells, J. Fluid Mech., 697, 336–366, 2012. a
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q., and Wan, Z.-H.: Flow reversals in two-dimensional thermal convection in tilted cells, J. Fluid Mech., 849, 355–372, https://doi.org/10.1017/jfm.2018.451, 2018. a
Wang, Y., He, X., and Tong, P.: Turbulent temperature fluctuations in a closed Rayleigh–Bénard convection cell, J. Fluid Mech., 874, 263–284, https://doi.org/10.1017/jfm.2019.405, 2019. a
Wang, Y., Wei, Y., Tong, P., and He, X.: Collective effect of thermal plumes on temperature fluctuations in a closed Rayleigh–Bénard convection cell, J. Fluid Mech., 934, A13, https://doi.org/10.1017/jfm.2021.1107, 2022. a, b, c, d
Wei, P.: The persistence of large-scale circulation in Rayleigh–Bénard convection, J. Fluid Mech., 924, A28, https://doi.org/10.1017/jfm.2021.619, 2021. a
Xi, H.-D., Lam, S., and Xia, K.-Q.: From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection, J. Fluid Mech., 503, 47–56, https://doi.org/10.1017/S0022112004008079, 2004. a
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S., and Xia, K.-Q.: Origin of the temperature oscillation in turbulent thermal convection, Phys. Rev. Lett., 102, 044503, https://doi.org/10.1103/PhysRevLett.102.044503, 2009. a
Xu, A., Chen, X., and Xi, H.-D.: Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells, J. Fluid Mech., 910, A33, https://doi.org/10.1017/jfm.2020.964, 2021a. a
Xu, W., Wang, Y., He, X., Wang, X., Schumacher, J., Huang, S.-D., and Tong, P.: Mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection at low Prandtl numbers, J. Fluid Mech., 918, A1, https://doi.org/10.1017/jfm.2021.255, 2021b. a
Yan, Z., Li, X., and Yu, C.: Scale locality of helicity cascade in physical space, Phys. Fluids, 32, 061705, https://doi.org/10.1063/5.0013009, 2020. a
Yano, J.: Geophysical Convection Dynamics, no. 5 in Developments in Weather and Climate Science, Elsevier Science, ISBN 9780323912136, 2023. a
Yano, J.-I. and Morrison, H.: Thermal vortex ring: vortex-dynamics analysis of a high-resolution simulation, J. Fluid Mech., 991, A18, https://doi.org/10.1017/jfm.2024.485, 2024. a
Yao, J. and Hussain, F.: Vortex reconnection and turbulence cascade, Annu. Rev. Fluid Mech., 54, 317–347, https://doi.org/10.1146/annurev-fluid-030121-125143, 2022. a
Zhang, Y.-Z., Sun, C., Bao, Y., and Zhou, Q.: How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection, J. Fluid Mech., 836, p. R2, https://doi.org/10.1017/jfm.2017.786, 2018. a, b
Zhou, Q. and Xia, K.-Q.: Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell, J. Fluid Mech., 721, 199–224, https://doi.org/10.1017/jfm.2013.73, 2013. a
Zhou, S.-Q., Xie, Y.-C., Sun, C., and Xia, K.-Q.: Statistical characterization of thermal plumes in turbulent thermal convection, Phys. Rev. Fluids, 1, 054301, https://doi.org/10.1103/PhysRevFluids.1.054301, 2016. a
Zhu, X., Mathai, V., Stevens, R. J. A. M., Verzicco, R., and Lohse, D.: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection, Phys. Rev. Lett., 120, 144502, https://doi.org/10.1103/PhysRevLett.120.144502, 2018. a
Short summary
Our objective was to enhance understanding of thermally driven convection in terms of small-scale variations in the temperature scalar field. We conducted a small-scale study of the temperature field in the Π Chamber using three different temperature differences (10 K, 15 K, and 20 K). Measurements were carried out using a miniaturized UltraFast Thermometer operating at 2 kHz, allowing undisturbed vertical temperature profiling from 8 cm above the floor to 5 cm below the ceiling.
Our objective was to enhance understanding of thermally driven convection in terms of...