Articles | Volume 6, issue 5
https://doi.org/10.5194/amt-6-1227-2013
https://doi.org/10.5194/amt-6-1227-2013
Research article
 | 
14 May 2013
Research article |  | 14 May 2013

Ground-based remote sensing of thin clouds in the Arctic

T. J. Garrett and C. Zhao

Related authors

A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024,https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024,https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Finite domains cause bias in measured and modeled distributions of cloud sizes
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024,https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024,https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Lotka's wheel and the long arm of history: how does the distant past determine today's global rate of energy consumption?
Timothy J. Garrett, Matheus R. Grasselli, and Stephen Keen
Earth Syst. Dynam., 13, 1021–1028, https://doi.org/10.5194/esd-13-1021-2022,https://doi.org/10.5194/esd-13-1021-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025,https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025,https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025,https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025,https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary

Cited articles

Beesley, J. A.: Estimating the effect of clouds on the arctic surface energy budget, J. Geophys. Res., 105, 10103–10117, 2000.
Bourdages, L., Duck, T. J., Lesins, G., Drummond, J. R., and Eloranta, E. W.: Physical properties of High Arctic tropospheric particles during winter, Atmos. Chem. Phys., 9, 6881–6897, https://doi.org/10.5194/acp-9-6881-2009, 2009.
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., and Scott, V. S.: Full-time eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing, J. Atmos. Ocean. Tech., 19, 431–442, 2002.
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, http://dx.doi.org/10.1029/2012GL053385, 2012.
Chylek, P., Robinson, S., Dubey, M. K., King, M. D., Fu, Q., and Clodius, W. B.: Comparison of near-infrared and thermal infrared cloud phase detections, J. Geophys. Res., 111, D20203, https://doi.org/10.1029/2006JD007140, 2006.
Download
Share