Articles | Volume 8, issue 3
https://doi.org/10.5194/amt-8-1537-2015
https://doi.org/10.5194/amt-8-1537-2015
Research article
 | 
24 Mar 2015
Research article |  | 24 Mar 2015

Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers

K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker

Related authors

Long-term trends in aerosol properties derived from AERONET measurements
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
EGUsphere, https://doi.org/10.5194/egusphere-2024-2533,https://doi.org/10.5194/egusphere-2024-2533, 2024
Short summary
Warm-phase Microphysical Evolution in Large Eddy Simulations of Tropical Cumulus Congestus: Constraining Drop Size Distribution Evolution using Polarimetery Retrievals and a Thermal-Based Framework
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413,https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024,https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach
Zihao Yuan, Guangliang Fu, Bastiaan van Diedenhoven, Hai Xiang Lin, Jan Willem Erisman, and Otto P. Hasekamp
Atmos. Meas. Tech., 17, 2595–2610, https://doi.org/10.5194/amt-17-2595-2024,https://doi.org/10.5194/amt-17-2595-2024, 2024
Short summary
Shortwave reflected energy from NISTAR and the Earth Polychromatic Imaging Camera onboard the DSCOVR spacecraft
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638,https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary

Cited articles

Auer Jr., A. H. and Veal, D. L.: The dimension of ice crystals in natural clouds, J. Atmos. Sci., 27, 919–926, 1970.
Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Ra., 110, 1239–1260, 2009.
Barker, H. W. and Marshak, A.: Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements, J. Atmos. Sci., 58, 2989–3006, 2001.
Bi, L., Yang, P., Liu, C., Yi, B., Baum, B. A., van Diedenhoven, B., and Iwabuchi, H.: Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds, J. Quant. Spectrosc. Ra., 146, 158–174, http://www.sciencedirect.com/science/article/pii/S0022407314001332, 2014.
Campos, E. F., Ware, R., Joe, P., and Hudak, D.: Monitoring water phase dynamics in winter clouds, Atmos. Res., 147, 86–100, 2014.
Download
Short summary
We test if ground-based sun photometers/radiometers like those in the Aerosol Robotic Network (AERONET) can use the polarization sensitivity of some instruments for improved cloud optical property retrieval. Our radiative transfer simulations show that the direction of linear polarization indicates cloud thermodynamic phase for optically thin clouds. In practice, data analysis shows a weak response with AERONET instruments, most likely due to noise and orientation/calibration ambiguity.