Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5441-2016
https://doi.org/10.5194/amt-9-5441-2016
Research article
 | 
14 Nov 2016
Research article |  | 14 Nov 2016

The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

Paolo Sanò, Giulia Panegrossi, Daniele Casella, Anna C. Marra, Francesco Di Paola, and Stefano Dietrich

Related authors

The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024,https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017,https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Multi-sensor analysis of convective activity in central Italy during the HyMeX SOP 1.1
N. Roberto, E. Adirosi, L. Baldini, D. Casella, S. Dietrich, P. Gatlin, G. Panegrossi, M. Petracca, P. Sanò, and A. Tokay
Atmos. Meas. Tech., 9, 535–552, https://doi.org/10.5194/amt-9-535-2016,https://doi.org/10.5194/amt-9-535-2016, 2016
Short summary
A novel algorithm for detection of precipitation in tropical regions using PMW radiometers
D. Casella, G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 1217–1232, https://doi.org/10.5194/amt-8-1217-2015,https://doi.org/10.5194/amt-8-1217-2015, 2015
Short summary
The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies
P. Sanò, G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 837–857, https://doi.org/10.5194/amt-8-837-2015,https://doi.org/10.5194/amt-8-837-2015, 2015

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Analysis of the measurement uncertainty for a 3D wind lidar
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024,https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary

Cited articles

Aires, F., Aznay, O., Prigent, C., Paul, M., and Bernardo F.: Synergistic multi-wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys. Res., 117, D18304, https://doi.org/10.1029/2011JD017188, 2012.
Anders, U. and Korn, O.: Model selection in neural networks, Neural Networks, 12, 309–323, 1999.
Bellerby, T., Todd, M., Kniveton, D., and Kidd, C.,: Rainfall Estimation from a Combination of TRMM Precipitation Radar and GOES Multispectral Satellite Imagery through the Use of an Artificial Neural Network, J. Appl. Meteorol., 39, 2115–2128, https://doi.org/10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2, 2000.
Bellerby, T. J.: Satellite rainfall uncertainty estimation using an artificial neural network, J. Hydrometeorol., 8, 1397–1412, https://doi.org/10.1175/2007JHM846.1, 2007.
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626, 2003.
Download
Short summary
The objective of this paper is to describe the development and evaluate the performance of a totally new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track ATMS radiometer measurements.