Articles | Volume 9, issue 11
Atmos. Meas. Tech., 9, 5441–5460, 2016
https://doi.org/10.5194/amt-9-5441-2016
Atmos. Meas. Tech., 9, 5441–5460, 2016
https://doi.org/10.5194/amt-9-5441-2016

Research article 14 Nov 2016

Research article | 14 Nov 2016

The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

Paolo Sanò et al.

Related authors

Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017,https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Multi-sensor analysis of convective activity in central Italy during the HyMeX SOP 1.1
N. Roberto, E. Adirosi, L. Baldini, D. Casella, S. Dietrich, P. Gatlin, G. Panegrossi, M. Petracca, P. Sanò, and A. Tokay
Atmos. Meas. Tech., 9, 535–552, https://doi.org/10.5194/amt-9-535-2016,https://doi.org/10.5194/amt-9-535-2016, 2016
Short summary
A novel algorithm for detection of precipitation in tropical regions using PMW radiometers
D. Casella, G. Panegrossi, P. Sanò, L. Milani, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 1217–1232, https://doi.org/10.5194/amt-8-1217-2015,https://doi.org/10.5194/amt-8-1217-2015, 2015
Short summary
The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies
P. Sanò, G. Panegrossi, D. Casella, F. Di Paola, L. Milani, A. Mugnai, M. Petracca, and S. Dietrich
Atmos. Meas. Tech., 8, 837–857, https://doi.org/10.5194/amt-8-837-2015,https://doi.org/10.5194/amt-8-837-2015, 2015
Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar
L. Milani, F. Porcù, D. Casella, S. Dietrich, G. Panegrossi, M. Petracca, and P. Sanò
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-141-2015,https://doi.org/10.5194/tcd-9-141-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric tomography using the Nordic Meteor Radar Cluster and Chilean Observation Network De Meteor Radars: network details and 3D-Var retrieval
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021,https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Using vertical phase differences to better resolve 3D gravity wave structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021,https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
High-temporal-resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
Tong Ning and Gunnar Elgered
Atmos. Meas. Tech., 14, 5593–5605, https://doi.org/10.5194/amt-14-5593-2021,https://doi.org/10.5194/amt-14-5593-2021, 2021
Short summary
Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
GNSS-based water vapor estimation and validation during the MOSAiC expedition
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021,https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary

Cited articles

Aires, F., Aznay, O., Prigent, C., Paul, M., and Bernardo F.: Synergistic multi-wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys. Res., 117, D18304, https://doi.org/10.1029/2011JD017188, 2012.
Anders, U. and Korn, O.: Model selection in neural networks, Neural Networks, 12, 309–323, 1999.
Bellerby, T., Todd, M., Kniveton, D., and Kidd, C.,: Rainfall Estimation from a Combination of TRMM Precipitation Radar and GOES Multispectral Satellite Imagery through the Use of an Artificial Neural Network, J. Appl. Meteorol., 39, 2115–2128, https://doi.org/10.1175/1520-0450(2001)040<2115:REFACO>2.0.CO;2, 2000.
Bellerby, T. J.: Satellite rainfall uncertainty estimation using an artificial neural network, J. Hydrometeorol., 8, 1397–1412, https://doi.org/10.1175/2007JHM846.1, 2007.
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626, 2003.
Download
Short summary
The objective of this paper is to describe the development and evaluate the performance of a totally new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track ATMS radiometer measurements.