Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-909-2016
https://doi.org/10.5194/amt-9-909-2016
Research article
 | 
07 Mar 2016
Research article |  | 07 Mar 2016

Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR

Daniel Fisher, Caroline A. Poulsen, Gareth E. Thomas, and Jan-Peter Muller

Related authors

LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis
M. J. Wooster, G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. Lattanzio, D. Fisher, and R. Mullen
Atmos. Chem. Phys., 15, 13217–13239, https://doi.org/10.5194/acp-15-13217-2015,https://doi.org/10.5194/acp-15-13217-2015, 2015
Short summary
LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)
G. Roberts, M. J. Wooster, W. Xu, P. H. Freeborn, J.-J. Morcrette, L. Jones, A. Benedetti, H. Jiangping, D. Fisher, and J. W. Kaiser
Atmos. Chem. Phys., 15, 13241–13267, https://doi.org/10.5194/acp-15-13241-2015,https://doi.org/10.5194/acp-15-13241-2015, 2015
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary

Cited articles

Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorol. Appl., 18, 324–333, 2011.
Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012.
Ardanuy, P. E., Stowe, L. L., Gruber, A., and Weiss, M.: Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus 7 observations, J. Geophys. Res.-Atmos., 96, 18537–18549, 1991.
Baum, B. A. and Wielicki, B. A.: Cirrus cloud retrieval using infrared sounding data – multilevel cloud errors, J. Appl. Meteorol., 33, 107–117, 1994.
Baran, A. J., Shcherbakov, V. N., Baker, B. A., Gayet, J. F., and Lawson, R. P.: On the scattering phase function of nonsymmetric ice crystals, Q. J. Roy. Meteor. Soc., 131, 2609–2616, 2005.
Download
Short summary
Observational data sets of cloud characteristics are of key importance in climate science for reducing uncertainty when predicting the future state of the Earth's climate. Here we present a composite method of observing cloud from the Advanced Along Track Scanning Radiometer, employing both radiometric and geometric approaches. Using this method we find improved accuracy for resolving the cloud top height for very-low and high clouds accompanied by small changes in the microphysical parameters.