Articles | Volume 11, issue 5
https://doi.org/10.5194/amt-11-3059-2018
https://doi.org/10.5194/amt-11-3059-2018
Research article
 | 
30 May 2018
Research article |  | 30 May 2018

Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements

Marta Tecla Falconi, Annakaisa von Lerber, Davide Ori, Frank Silvio Marzano, and Dmitri Moisseev

Related authors

Moisture Budget Estimates Derived from Airborne Observations in an Arctic Atmospheric River During its Dissipation
Henning Dorff, Florian Ewald, Heike Konow, Mario Mech, Davide Ori, Vera Schemann, Andreas Walbröl, Manfred Wendisch, and Felix Ament
EGUsphere, https://doi.org/10.5194/egusphere-2024-3632,https://doi.org/10.5194/egusphere-2024-3632, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024,https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-155,https://doi.org/10.5194/amt-2024-155, 2024
Revised manuscript accepted for AMT
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99,https://doi.org/10.5194/gmd-2024-99, 2024
Preprint under review for GMD
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Analysis of the measurement uncertainty for a 3D wind lidar
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024,https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary

Cited articles

Atmospheric Radiation Measurement (ARM) Climate Research Facility: KAZR Corrected Data (KAZRCORGE). 2014-02-12 to 2014-03-20, updated hourly, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Matthews, A., Isom, B., Nelson, D., Lindenmaier, I., Hardin, J., Johnson, K., Bharadwaj, N., Giangrande, S., and Toto, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1350632 (last access: 10 January 2017), 1990. a
Atmospheric Radiation Measurement (ARM) Climate Research Facility: MWR Retrievals (MWRRET1LILJCLOU). 2014-02-12 to 2014-03-20, updated hourly, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Sivaraman, C., Gaustad, K., Riihimaki, L., Cadeddu, M., Shippert, T., and Ghate, V., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1027369 (last access: 10 January 2017), 1993. a
Atmospheric Radiation Measurement (ARM) Climate Research Facility: MWACR Ship Motion Correction (MWACRSHIPCOR). 2014-02-12 to 2014-03-20, updated hourly, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Matthews, A., Isom, B., Nelson, D., Lindenmaier, I., Hardin, J., Johnson, K., and Bharadwaj, N., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1350621 (last access: 10 January 2017), 2006. a
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Ka-Band Scanning ARM Cloud Radar (KASACRCRRASTER). 2014-02-12 to 2014-03-20, updated hourly, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Matthews, A., Isom, B., Nelson, D., Lindenmaier, I., Hardin, J., Johnson, K., Lamer, K., Bharadwaj, N., Kollias, P., Giangrande, S., and Toto, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1095596 (last access: 10 January 2017), 2010. a
Atmospheric Radiation Measurement (ARM) Climate Research Facility: X-Band Scanning ARM Cloud Radar (XSACRRHI). 2014-02-12 to 2014-03-20, updated hourly, ARM Mobile Facility (TMP) U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 (M1), compiled by: Matthews, A., Isom, B., Nelson, D., Lindenmaier, I., Hardin, J., Johnson, K., and Bharadwaj, N., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1150299 (last access: 10 January 2017), 2011. a
Download
Short summary
Estimating snowfall intensity from satellite and ground-based radar missions requires accurate retrieval models. Reflectivity–snowfall relations are obtained at cm and mm wavelengths using data recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland. Lightly, moderately and heavily rimed snow cases are identified. Numerical simulations are performed to relate snowflake microphysical (video disdrometer) and multifrequency backscattering properties (radars).