Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 4745–4778, 2019
https://doi.org/10.5194/amt-12-4745-2019
Atmos. Meas. Tech., 12, 4745–4778, 2019
https://doi.org/10.5194/amt-12-4745-2019

Research article 06 Sep 2019

Research article | 06 Sep 2019

Ozone profile climatology for remote sensing retrieval algorithms

Kai Yang and Xiong Liu

Related authors

Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals
Juseon Bak, Xiong Liu, Robert Spurr, Kai Yang, Caroline R. Nowlan, Christopher Chan Miller, Gonzalo Gonzalez Abad, and Kelly Chance
Atmos. Meas. Tech., 14, 2659–2672, https://doi.org/10.5194/amt-14-2659-2021,https://doi.org/10.5194/amt-14-2659-2021, 2021
Short summary
Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data – Part 1: Formulation and sensitivity analysis
Yi Wang, Jun Wang, Xiaoguang Xu, Daven K. Henze, Zhen Qu, and Kai Yang
Atmos. Chem. Phys., 20, 6631–6650, https://doi.org/10.5194/acp-20-6631-2020,https://doi.org/10.5194/acp-20-6631-2020, 2020
Short summary
A physics-based approach to oversample multi-satellite, multispecies observations to a common grid
Kang Sun, Lei Zhu, Karen Cady-Pereira, Christopher Chan Miller, Kelly Chance, Lieven Clarisse, Pierre-François Coheur, Gonzalo González Abad, Guanyu Huang, Xiong Liu, Martin Van Damme, Kai Yang, and Mark Zondlo
Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018,https://doi.org/10.5194/amt-11-6679-2018, 2018
Short summary
Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, and Zhaonan Cai
Atmos. Meas. Tech., 11, 17–32, https://doi.org/10.5194/amt-11-17-2018,https://doi.org/10.5194/amt-11-17-2018, 2018
Short summary
Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals
Juseon Bak, Xiong Liu, Jae-Hwan Kim, David P. Haffner, Kelly Chance, Kai Yang, and Kang Sun
Atmos. Meas. Tech., 10, 4373–4388, https://doi.org/10.5194/amt-10-4373-2017,https://doi.org/10.5194/amt-10-4373-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021,https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary
An improved TROPOMI tropospheric NO2 research product over Europe
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021,https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
Farhan Mustafa, Lingbing Bu, Qin Wang, Na Yao, Muhammad Shahzaman, Muhammad Bilal, Rana Waqar Aslam, and Rashid Iqbal
Atmos. Meas. Tech., 14, 7277–7290, https://doi.org/10.5194/amt-14-7277-2021,https://doi.org/10.5194/amt-14-7277-2021, 2021
Short summary
Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021,https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
GFIT3: a full physics retrieval algorithm for remote sensing of greenhouse gases in the presence of aerosols
Zhao-Cheng Zeng, Vijay Natraj, Feng Xu, Sihe Chen, Fang-Ying Gong, Thomas J. Pongetti, Keeyoon Sung, Geoffrey Toon, Stanley P. Sander, and Yuk L. Yung
Atmos. Meas. Tech., 14, 6483–6507, https://doi.org/10.5194/amt-14-6483-2021,https://doi.org/10.5194/amt-14-6483-2021, 2021
Short summary

Cited articles

Bak, J., Liu, X., Wei, J. C., Pan, L. L., Chance, K., and Kim, J. H.: Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology, Atmos. Meas. Tech., 6, 2239–2254, https://doi.org/10.5194/amt-6-2239-2013, 2013. a, b, c, d, e, f
Bhartia, P. K. and Wellemeyer, C. G.: TOMS-V8 Total O3 Algorithm, in: OMI Algorithm Theoretical Basis Document, edited by: Bhartia, P. K., vol. II, chap. 2, pp. 15–32, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 2 edn., available at: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf (last access: 18 June 2019), 2002. a, b, c, d, e, f, g, h, i
Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, 2013. a, b
Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.: MERRA-2 : Initial Evaluation of the Climate, in: NASA Technical Report Series on Global Modeling and Data Assimilation NASA/TM-2015-104606, edited by: Randal D. Koster, vol. 43, p. 139, Goddard Space Flight Center, Greenbelt, Maryland, USA, available at: https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf (last access: 2 April 2019), 2015. a, b, c
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere, vol. 32 of Atmospheric and Oceanographic Sciences Library, Springer-Verlag, Berlin/Heidelberg, https://doi.org/10.1007/1-4020-3824-0, 2005. a
Download
Short summary
We constructed total-ozone-dependent and tropopause-dependent climatologies from MERRA-2 ozone data to describe the dynamic variations in the ozone profile in response to changing meteorological conditions. The new climatologies contain the first quantitative characterization of ozone profile covariances, which facilitate a new approach to improve ozone profiles using the most probable patterns of profile adjustments represented by the empirical orthogonal functions of the covariance matrices.