Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5791-2019
https://doi.org/10.5194/amt-12-5791-2019
Research article
 | 
04 Nov 2019
Research article |  | 04 Nov 2019

Bias correction of long-path CO2 observations in a complex urban environment for carbon cycle model inter-comparison and data assimilation

T. Scott Zaccheo, Nathan Blume, Timothy Pernini, Jeremy Dobler, and Jinghui Lian

Related authors

Single-blind detection, localization, and quantification of methane emissions using continuous path-integrated column measurements
Nathan Blume, Timothy G. Pernini, Jeremy T. Dobler, T. Scott Zaccheo, Doug McGregor, and Clay Bell
EGUsphere, https://doi.org/10.31223/X5294N,https://doi.org/10.31223/X5294N, 2023
Preprint archived
Short summary
Estimating oil sands emissions using horizontal path-integrated column measurements
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022,https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Analysis of temporal and spatial variability of atmospheric CO2 concentration within Paris from the GreenLITE laser imaging experiment
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, T. Scott Zaccheo, Jeremy Dobler, Michel Ramonet, Johannes Staufer, Diego Santaren, Irène Xueref-Remy, and Philippe Ciais
Atmos. Chem. Phys., 19, 13809–13825, https://doi.org/10.5194/acp-19-13809-2019,https://doi.org/10.5194/acp-19-13809-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary

Cited articles

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015. 
Broquet, G., Chevallier, F., Rayner, P., Aulagnier, C., Pison, I., Ramonet, M., Schmidt, M., Vermeulen, A. T., and Ciais, P.: A European summertime CO2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements, J. Geophys. Res., 116, D23303, https://doi.org/https://doi.org/10.1029/2011JD016202, 2011. 
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. 
Cuccoli, F., Facheris, L., and Gori, S.: Radio base network and tomographic processing for real time estimation of the rainfall rate fields, Proceedings IEEE Geoscience and Remote Sensing Symposium, 12–17 July, Cape Town, 2009. 
Devi, V. M., Benner, D. C., Brown, L. R., Miller, C. E., and Toth, R. A.: Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities, and air- and self-broadening derived with constrained multispectrum analysis, J. Mol. Spectrosc., 242, 90–117, 2007a. 
Download
Short summary
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE™) trace gas measurement system provides high-precision, long-path measurements of atmospheric trace gases including CO2 and CH4 over extended (0.04 km2–25 km2) areas of interest. This work provides a brief overview of the system design, a description of a newly developed bias-correction approach and the results as applied to data collected in Paris, France, over a 1-year period spanning November 2015 to December 2016.
Share