Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5791-2019
https://doi.org/10.5194/amt-12-5791-2019
Research article
 | 
04 Nov 2019
Research article |  | 04 Nov 2019

Bias correction of long-path CO2 observations in a complex urban environment for carbon cycle model inter-comparison and data assimilation

T. Scott Zaccheo, Nathan Blume, Timothy Pernini, Jeremy Dobler, and Jinghui Lian

Related authors

Single-blind detection, localization, and quantification of methane emissions using continuous path-integrated column measurements
Nathan Blume, Timothy G. Pernini, Jeremy T. Dobler, T. Scott Zaccheo, Doug McGregor, and Clay Bell
EGUsphere, https://doi.org/10.31223/X5294N,https://doi.org/10.31223/X5294N, 2023
Preprint archived
Short summary
Estimating oil sands emissions using horizontal path-integrated column measurements
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022,https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Analysis of temporal and spatial variability of atmospheric CO2 concentration within Paris from the GreenLITE laser imaging experiment
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, T. Scott Zaccheo, Jeremy Dobler, Michel Ramonet, Johannes Staufer, Diego Santaren, Irène Xueref-Remy, and Philippe Ciais
Atmos. Chem. Phys., 19, 13809–13825, https://doi.org/10.5194/acp-19-13809-2019,https://doi.org/10.5194/acp-19-13809-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Separating and quantifying facility-level methane emissions with overlapping plumes for spaceborne methane monitoring
Yiguo Pang, Longfei Tian, Denghui Hu, Shuang Gao, and Guohua Liu
Atmos. Meas. Tech., 18, 455–470, https://doi.org/10.5194/amt-18-455-2025,https://doi.org/10.5194/amt-18-455-2025, 2025
Short summary
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary

Cited articles

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys., 15, 1707–1724, https://doi.org/10.5194/acp-15-1707-2015, 2015. 
Broquet, G., Chevallier, F., Rayner, P., Aulagnier, C., Pison, I., Ramonet, M., Schmidt, M., Vermeulen, A. T., and Ciais, P.: A European summertime CO2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements, J. Geophys. Res., 116, D23303, https://doi.org/https://doi.org/10.1029/2011JD016202, 2011. 
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. 
Cuccoli, F., Facheris, L., and Gori, S.: Radio base network and tomographic processing for real time estimation of the rainfall rate fields, Proceedings IEEE Geoscience and Remote Sensing Symposium, 12–17 July, Cape Town, 2009. 
Devi, V. M., Benner, D. C., Brown, L. R., Miller, C. E., and Toth, R. A.: Line mixing and speed dependence in CO2 at 6348 cm−1: Positions, intensities, and air- and self-broadening derived with constrained multispectrum analysis, J. Mol. Spectrosc., 242, 90–117, 2007a. 
Download
Short summary
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE™) trace gas measurement system provides high-precision, long-path measurements of atmospheric trace gases including CO2 and CH4 over extended (0.04 km2–25 km2) areas of interest. This work provides a brief overview of the system design, a description of a newly developed bias-correction approach and the results as applied to data collected in Paris, France, over a 1-year period spanning November 2015 to December 2016.