Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-37-2021
https://doi.org/10.5194/amt-14-37-2021
Research article
 | 
04 Jan 2021
Research article |  | 04 Jan 2021

Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments

Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sachchida Tripathi on behalf of the Authors (04 Oct 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (06 Oct 2020) by Pierre Herckes
RR by Anonymous Referee #1 (28 Oct 2020)
ED: Publish subject to technical corrections (01 Nov 2020) by Pierre Herckes
AR by Sachchida Tripathi on behalf of the Authors (08 Nov 2020)  Author's response   Manuscript 
Download
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.