Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval algorithm for the column CO2 mixing ratio from pulsed multi-wavelength lidar measurements
NASA Goddard Space Flight Center, Science and Exploration Directorate, Greenbelt, Maryland, USA
James B. Abshire
NASA Goddard Space Flight Center, Science and Exploration Directorate, Greenbelt, Maryland, USA
University of Maryland, College Park, Maryland, USA
Anand Ramanathan
NASA Goddard Space Flight Center, Science and Exploration Directorate, Greenbelt, Maryland, USA
now at: Audible, Inc., Newark, New Jersey, USA
Stephan R. Kawa
NASA Goddard Space Flight Center, Science and Exploration Directorate, Greenbelt, Maryland, USA
Jianping Mao
NASA Goddard Space Flight Center, Science and Exploration Directorate, Greenbelt, Maryland, USA
University of Maryland, College Park, Maryland, USA
Related authors
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022, https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Short summary
We describe the measurement and data processing of the atmospheric backscatter profile data by our CO2 Sounder lidar from the 2017 ASCENDS/ABoVE airborne campaign. It is an additional data set from the column average CO2 mixing ratio measurements from laser sounding. It not only helps to interpret the CO2 mixing ratio measurement but also give a standalone data set for atmosphere backscattering study at 1572 nm wavelength.
Jay Herman and Jianping Mao
Atmos. Meas. Tech., 18, 4165–4182, https://doi.org/10.5194/amt-18-4165-2025, https://doi.org/10.5194/amt-18-4165-2025, 2025
Short summary
Short summary
This paper examines the seasonal variation of column formaldehyde (HCHO), NO2, and O3 as retrieved from satellite Ozone Monitoring Instrument (OMI) and ground-based Pandora spectrometer observations. Both OMI and Pandora show that HCHO has a strong seasonal dependence. The daily amount of NO2 pollution is underestimated by the OMI satellite observations. Pandora O3 measurements have been successfully compared with hourly satellite measurements from the Earth Polychromatic Imaging Camera (EPIC).
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022, https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Short summary
We describe the measurement and data processing of the atmospheric backscatter profile data by our CO2 Sounder lidar from the 2017 ASCENDS/ABoVE airborne campaign. It is an additional data set from the column average CO2 mixing ratio measurements from laser sounding. It not only helps to interpret the CO2 mixing ratio measurement but also give a standalone data set for atmosphere backscattering study at 1572 nm wavelength.
Cited articles
Abshire, J. B., Riris, H., Allan, G. R., Weaver, C., Mao, J., Sun, X.,
Hasselbrack, W. E., Kawa, S. R., and Biraud, S.: Pulsed airborne lidar
measurements of atmospheric CO2 column absorption, Tellus B, 62, 770–783,
https://doi.org/10.1111/j.1600-0889.2010.00502.x, 2010.
Abshire, J. B., Riris, H., Weaver, C., Mao, J., Allan, G., Hasselbrack, W.,
and Browell, E. V.: Airborne measurements of CO2 column absorption and range
using a pulsed direct-detection integrated path differential absorption
lidar, Appl. Optics, 52, 4446–4461, https://doi.org/10.1364/AO.52.004446,
2013.
Abshire, J. B., Ramanathan, A., Riris, H., Mao, J., Allan, G. R.,
Hasselbrack, W. E., Weaver, C. J., and Browell, E. V.: Airborne measurements
of CO2 column concentration and range using a pulsed direct-detection IPDA
lidar, Remote Sens., 6, 443–469, https://doi.org/10.3390/rs6010443, 2014.
Abshire, J. B., Ramanathan, A. K., Riris, H., Allan, G. R., Sun, X., Hasselbrack, W. E., Mao, J., Wu, S., Chen, J., Numata, K., Kawa, S. R., Yang, M. Y. M., and DiGangi, J.: Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector, Atmos. Meas. Tech., 11, 2001–2025, https://doi.org/10.5194/amt-11-2001-2018, 2018.
Allan, G. R., Sun, X., Abshire, J. B., Riris, H., Hasslbrack, W. E., Kawa,
S. R. Numata, K., Mao, J., and Chen, J.: Atmospheric backscattering profiles
from the 2017 ASCENDS/ABoVE airborne campaign measured by the CO2
Sounder lidar, 2019 Fall AGU Annual Meeting, 9–13 December
2019, San Francisco, CA, USA, Paper A51M-2726, 2019.
Amediek, A., Ehret, G., Fix, A., Wirth, M., Büdenbender,
C., Quatrevalet, M., Kiemle, C., and Gerbig, C.: CHARM-F: A new airborne
integrated-path differential-absorption lidar for carbon dioxide and methane
observations: measurement performance and quantification of strong point
source emissions, Appl. Optics, 56, 5182–5197,
https://doi.org/10.1364/AO.56.005182, 2017.
Bevington, P. R.: Data Reduction and Error Analysis for the Physical
Science, chap. 6, McGraw-Hill, New York, USA, 1969.
Borsdorff, T., Hasekamp, O. P., Wassmann, A., and Landgraf, J.: Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels, Atmos. Meas. Tech., 7, 523–535, https://doi.org/10.5194/amt-7-523-2014, 2014.
Campbell, J. F., Lin, B., Dobler, J., Pal, S., Davis, K., Obland, M. D.,
Erxleben, W., McGregor, D., O'Dell, C., Bell, E., Weir, B., Fan, T-.F.,
Kooi, S., Gordon, I., Corbett, A., and Kochanov, R.: Field evaluation of column
CO2 retrievals from intensity-modulated continuous-wave differential
absorption lidar measurements during the ACT-America campaign, Earth Space
Sci., 7, e2019EA000847, https://doi.org/10.1029/2019EA000847, 2020.
Chen, J. R., Numaa, K., and Wu, S. t.: Error reduction methods for
integrated-path differential-absorption lidar measurements, Opt. Express,
20, 15590–15609, https://doi.org/10.1364/OE.20.015589, 2012.
Chen, J. R., Numata, K., and Wu, S. T.: Error reduction in retrieval of
atmospheric species from symmetrically measured lidar sounding absorption
spectra, Opt. Express, 22, 26055–26075,
https://doi.org/10.1364/OE.22.026055, 2014.
Chen, J. R., Numata, K., and We, S. T.: Impact of broadened laser line-shape
on retrieval of atmospheric species from lidar sounding absorption spectra,
Opt. Express, 23, 2660–2675, https://doi.org/10.1364/OE.23.002660, 2015.
Chen, J. R., Numata, K., and Wu, S. T.: Error analysis for lidar retrievals
of atmospheric species from absorption spectra, Opt. Express, 27,
36487–36504, https://doi.org/10.1364/OE.27.036487, 2019.
Clough, S. A. and Iacono, M. J.: Line-by-line calculation of atmospheric
fluxes and cooling rates 2. Application to carbon dioxide, methane, nitrous
oxide and the halocarbons, J. Geophys. Res.-Atmos. 100, 16519–16535,
https://doi.org/10.1029/95JD01386, 1995.
Clough, S. A., Iacono, M. J., and Moncet, J.: Line-by-line calculations of
atmospheric fluxes and cooling rates: Application to water vapor, J.
Geophys. Res.-Atmos. 97, 15761–15785, https://doi.org/10.1029/92JD01419,
1992.
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M., Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M. R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K., Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.
Dobler, J., Harrison, F., Browell, E., Lin, B., McGregor, D., Kooi, S.,
Choi, Y., and Ismail, S.: Atmospheric CO2 column measurements with an
airborne intensity-modulated continuous wave 1.57 µm fiber laser lidar,
Appl. Optics, 52, 2874–2892, https://doi.org/10.1364/AO.52.002874, 2013.
Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M., Mandrake, L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O'Brien, D., Osterman, G. B., Oyafuso, F., Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth, M., Tang, V., Taylor, T. E., To, C., Wunch, D., and Yoshimizu, J.: The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549–563, https://doi.org/10.5194/amt-10-549-2017, 2017.
Eldering, A., Taylor, T. E., O'Dell, C. W., and Pavlick, R.: The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data, Atmos. Meas. Tech., 12, 2341–2370, https://doi.org/10.5194/amt-12-2341-2019, 2019.
Gagliardi, R. M. and Karp, S.: Optical Communications, 2nd edn., John
Wiley and Sons, Hoboken, New Jersey, USA, 1995.
Goodman, J. W.: Some effects of target-induced scintillation on optical
radar performance, Proc. IEEE, 55, 1688–1700,
https://doi.org/10.1109/PROC.1965.4341, 1965.
Goodman, J. W.: Statistics properties of laser speckle patterns, in: Laser
Speckle and Related Phenomena, edited by: Dainty, J. C., Spinger-Verlag, Berlin, Heidelbery, Germany, 9–75, 1975.
Han, G., Shi, T., Ma, X., Xu, H., Zhang, M., Liu, Q., and Wei, G.:
Obtaining gradients of XCO2 in atmosphere using the constrained linear
least-squares technique and multi-wavelength IPDA LiDAR, Remote Sens., 12,
2395, https://doi.org/10.3390/rs12152395, 2020.
Jacob, J. C., Menzies, R. T., and Spiers, G. D.: Data processing and
analysis approach to retrieve carbon dioxide weighted-column mixing ratio
and 2 µm reflectance with an airborne laser absorption spectrometer, IEEE Trans. Geosci. Remote Sens., 57, 958–971,
https://doi.org/10.1109/TGRS.2018.2863711, 2019.
Kawa, S. R., Abshire, J. B., Baker, D. F., Browell, E. V., Crisp, D.,
Crowell, S. M. R., Hyon, J. J., Jacob, J. C., Jucks, K. W., Lin, B., Menzies, R. T., Ott, L. E., and Zaccheo, T. S.:
Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS):
Final Report of the ASCENDS, Ad Hoc Science Definition Team, Document ID:
20190000855, NASA/TP–2018-219034, GSFC-E-DAA-TN64573, available at:
https://www-air.larc.nasa.gov/missions/ascends/docs/NASA_TP_2018-219034_ASCENDS_ID1.pdf (last access: 14 May 2021), 2018.
Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445–2461, https://doi.org/10.5194/amt-9-2445-2016, 2016.
Mao, J., Ramanathan, A., Abshire, J. B., Kawa, S. R., Riris, H., Allan, G. R., Rodriguez, M., Hasselbrack, W. E., Sun, X., Numata, K., Chen, J., Choi, Y., and Yang, M. Y. M.: Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar, Atmos. Meas. Tech., 11, 127–140, https://doi.org/10.5194/amt-11-127-2018, 2018.
Mao, J., Abshire, J. B., Kawa, S. R., Riris, H., Allan, G. R., Hasselbrack,
W. E., Numata, K., Chen, J., Sun, X., Nicely, J. M., DiGangi, P. J., and
Choi, Y.: Airborne demonstration of atmospheric cO2 concentration
measurements with a pulsed multi-wavelength IPDA lidar, 15th
International Workshop on Greenhouse Gas Measurements from Space (IWGGMS),
3–5 June 2019, Sapporo, Japan, Paper 5-5, available at:
https://www.nies.go.jp/soc/doc/Oral_Presentations/Session5-6/5-5_iw15op_Jianping_Mao.pdf (last access: 14 May 2021), 2019.
McManamon, P.: LiDAR, Technologies and Systems, chap. 3, SPIE Press, Bellingham, USA, 2019.
Menzies, R. T., Spiers, G. D., and Jacob, J.: Airborne laser absorption
spectrometer measurements of atmospheric CO2 column mole fractions:
source and sink detection and environmental impacts on retrievals, J. Atmos.
Ocean Technol., 31, 404–421, https://doi.org/10.1175/JTECH-D-13-00128.1,
2014.
NASA Langley Research Center: Airborne Science Data for Atmospheric Composition, available at: https://www-air.larc.nasa.gov/cgi-bin/ArcView/ascends.2017#ABSHIRE.JAMES/ (last access: 16 May 2021), 2020.
Numata, K., Chen, J. R., and Wu, S. T.: Precision and fast wavelength tuning
of a dynamically phase-locked widely-tunable laser, Opt. Express, 20,
14234–14243, https://doi.org/10.1364/OE.20.014234, 2012.
Peters, G. and Wilkinson, J. H.: The least squares problem and
pseudo-Inverses, Comput. J., 13, 309–316,
https://doi.org/10.1093/comjnl/13.3.309, 1970.
Ramanathan, A., Mao, J., Allan, G. R., Riris, H., Weaver, C. J.,
Hasselbrack, W. E., Browell, E. V., and Abshire, J. B.: Spectroscopic
measurements of a CO2 absorption line in an open vertical path using an
airborne lidar, Appl. Phys. Lett., 103, 214102,
https://doi.org/10.1063/1.4832616, 2013.
Ramanathan, A. K., Mao, J., Abshire, J., and Allan, G. R.: Remote sensing
measurements of the CO2 mixing ratio in the planetary boundary layer
using cloud slicing with airborne lidar, Geophys. Res. Lett., 42, 2055–2062,
https://doi.org/10.1002/2014GL062749, 2015.
Ramanathan, A. K., Nguyen, H. M., Sun, X., Mao, J., Abshire, J. B., Hobbs, J. M., and Braverman, A. J.: A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements, Atmos. Meas. Tech., 11, 4909–4928, https://doi.org/10.5194/amt-11-4909-2018, 2018.
Refaat, T. F., Singh, U. N., Yu, J., Petros, M., and Ismail, S.:
Double-pulse 2 µm integrated path differential absorption lidar
airborne validation for atmospheric carbon dioxide measurement, Appl.
Optics, 55, 4232–4246, https://doi.org/10.1364/AO.55.004232, 2016.
Refaat, T. F., Petros M., Singh, U. N., Antill, C. W., and Remus Jr., R.
G.: High-precision and high-accuracy column dry-air mixing ratio measurement
of carbon dioxide using pulsed 2 µm IPDA lidar, IEEE Trans. Geosci.
Remote Sens., 58, 5804–5819, https://doi.org/10.1109/TGRS.2020.2970686,
2020.
Refaat, T. F., Petros, M., Antill, C. W., Singh, U. N., Choi, Y., Plant, J.
V., Digangi, J. P., and Noe, A.: Airborne testing of 2 µm pulsed IPDA lidar for active remote
sensing of atmospheric carbon dioxide, Atmosphere, 12, 412,
https://doi.org/10.3390/atmos12030412, 2021.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Shubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. D., Gu, W., Joiner, J., Koster, R. D., Luccesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.:
MERRA: NASA's modern-era retrospective analysis for research and
applications, J. Clim., 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rothman, L., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Champargue, A., Champion, J.-P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Noazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M., Simeckova, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., and Auwera, J. V.: The HITRAN 2008 molecular spectroscopic database, J.
Quant. Spectros. Radiat. Transfer, 110, 533–572,
https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Sellers, P. J., Schimel, D. S., Moore III, B., Liu, J., and Eldering, A.:
Observing carbon cycle–climate feedbacks from space, P.
Natl. Acad. Sci. USA, 115,
7860–7868, https://doi.org/10.1073/pnas.1716613115, 2018.
Spiers, G., Menzies, R., Jacob, J., Christensen, L., Phillips, M., Choi, Y.,
and Browell, E.: Atmospheric CO2 measurements with a 2 µm airborne
laser absorption spectrometer employing coherent detection, Appl. Optics,
50, 2098–2111, https://doi.org/10.1364/AO.50.002098, 2011.
Vay, S. A., Choi, Y., Vadrevu, K. P., Blake, D. R., Tyler, S. C., W., Woo,
J.-H., Weinheimer, A. J., Burkhart, J. F., Stohl, A., and Wennberg, P. O.,
Wisthaler, A., Hecobian, A., Kondo, Y., Diskin, G. S., and Sachse, G.:
Patterns of CO2 and radiocarbon across high northern latitudes during
International Polar Year 2008, J. Geophys. Res.-Atmos., 116, D14301,
https://doi.org/10.1029/2011JD015643, 2011.
Zhu, Y., Liu, J., Chen, X., Zhu, D. B., and Chen, W.: Sensitivity analysis
and correction algorithms for atmospheric CO2 measurements with
1.57 µm airborne double-pulse IPDA LIDAR, Opt. Express, 27,
32679–32699, https://doi.org/10.1364/OE.27.032679, 2019.
Zhu, Y., Yang, J., Chen, X., Zhu, X., Zhang, J., Li, S., Sun, Y., Hou, X.,
Bi, D., Bu, L., Zhang, Y., Liu, J., and Chen, W.: Airborne validation
experiment of 1.57 µm double-pulse IPDA lidar for atmospheric carbon
dioxide measurement, Remote Sens., 12, 1999,
https://doi.org/10.3390/rs12121999, 2020.
Short summary
This paper gives a detailed and complete description of the retrieval algorithm used in the multi-wavelength lidar for average column carbon dioxide mixing ratio measurements. The algorithm is similar to that used in passive trace-gas sounding and simultaneously solves for several parameters and provides the associated averaging kernel. The algorithm has been successfully used with the airborne lidar measurements. It can also be used with similar lidar for other trace-gas measurements.
This paper gives a detailed and complete description of the retrieval algorithm used in the...