Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7693-2021
https://doi.org/10.5194/amt-14-7693-2021
Research article
 | 
08 Dec 2021
Research article |  | 08 Dec 2021

Assessment of real-time bioaerosol particle counters using reference chamber experiments

Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou

Related authors

Real-time pollen identification using holographic imaging and fluorescence measurements
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024,https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Real-time pollen monitoring using digital holography
Eric Sauvageat, Yanick Zeder, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Thomas Konzelmann, Gian Lieberherr, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020,https://doi.org/10.5194/amt-13-1539-2020, 2020
Short summary
Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4
Theo Baracchini, Philip Y. Chu, Jonas Šukys, Gian Lieberherr, Stefan Wunderle, Alfred Wüest, and Damien Bouffard
Geosci. Model Dev., 13, 1267–1284, https://doi.org/10.5194/gmd-13-1267-2020,https://doi.org/10.5194/gmd-13-1267-2020, 2020
Short summary
Lake surface water temperatures of European Alpine lakes (1989–2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set
M. Riffler, G. Lieberherr, and S. Wunderle
Earth Syst. Sci. Data, 7, 1–17, https://doi.org/10.5194/essd-7-1-2015,https://doi.org/10.5194/essd-7-1-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
Pressure-dependent performance of two CEN-specified condensation particle counters
Paulus S. Bauer, Dorian Spät, Martina Eisenhut, Andreas Gattringer, and Bernadett Weinzierl
Atmos. Meas. Tech., 16, 4445–4460, https://doi.org/10.5194/amt-16-4445-2023,https://doi.org/10.5194/amt-16-4445-2023, 2023
Short summary
Characterisation of a self-sustained, water-based condensation particle counter for aircraft cruising pressure level operation
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023,https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations
Baseerat Romshoo, Mira Pöhlker, Alfred Wiedensohler, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Konstantina Vasilatou, Michaela N. Ess, Maria Gini, Konstantinos Eleftheriadis, Chris Robins, François Gaie-Levrel, and Thomas Müller
Atmos. Meas. Tech., 15, 6965–6989, https://doi.org/10.5194/amt-15-6965-2022,https://doi.org/10.5194/amt-15-6965-2022, 2022
Short summary
Characterization of tandem aerosol classifiers for selecting particles: implication for eliminating the multiple charging effect
Yao Song, Xiangyu Pei, Huichao Liu, Jiajia Zhou, and Zhibin Wang
Atmos. Meas. Tech., 15, 3513–3526, https://doi.org/10.5194/amt-15-3513-2022,https://doi.org/10.5194/amt-15-3513-2022, 2022
Short summary
Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections
Marilena Teri, Thomas Müller, Josef Gasteiger, Sara Valentini, Helmuth Horvath, Roberta Vecchi, Paulus Bauer, Adrian Walser, and Bernadett Weinzierl
Atmos. Meas. Tech., 15, 3161–3187, https://doi.org/10.5194/amt-15-3161-2022,https://doi.org/10.5194/amt-15-3161-2022, 2022
Short summary

Cited articles

Buters, J., Antunes, C., Galveias, A., Bergmann, K., Thibaudon, M., Galán, C., Galán, C., Schmidt Weber, C., and Oteros, J.: Pollen and spore monitoring in the world, Clin. Transl. Allergy, 8, https://doi.org/10.1186/s13601-018-0197-8, 2018. a
Calvo, A., Baumgardner, D., Castro, A., Fernández-González, D., Vega-Maray, A., Valencia-Barrera, R., Oduber, F., Blanco-Alegre, C., and Fraile, R.: Daily behavior of urban Fluorescing Aerosol Particles in northwest Spain, Atmos. Environ., 184, 262–277, https://doi.org/10.1016/j.atmosenv.2018.04.027, 2018. a
Chappuis, C., Tummon, F., Clot, B., Konzelmann, T., Calpini, B., and Crouzy, B.: Automatic pollen monitoring: first insights from hourly data, Aerobiologia, 36, 159–170, 2019. a
Crouzy, B., M., S., Konzelmann, T., Calpini, B., and Clot, B.: All-optical automatic pollen indentification: Towards an operational system, Atmos. Environ., 140, 202–212, 2016. a, b
D'Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., and Van Cauwenberge, P.: Allergenic pollen and pollen allergy in Europe, Allergy, 62, 976–990, https://doi.org/10.1111/j.1398-9995.2007.01393.x, 2007. a
Download
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.