Articles | Volume 15, issue 11
https://doi.org/10.5194/amt-15-3527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3527-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ozone Monitoring Instrument (OMI) collection 4: establishing a 17-year-long series of detrended level-1b data
Quintus Kleipool
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Nico Rozemeijer
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
TriOpSys B.V., Utrecht, the Netherlands
Mirna van Hoek
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Jonatan Leloux
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
TriOpSys B.V., Utrecht, the Netherlands
Erwin Loots
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Antje Ludewig
CORRESPONDING AUTHOR
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Emiel van der Plas
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Daley Adrichem
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
TriOpSys B.V., Utrecht, the Netherlands
Raoul Harel
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
TriOpSys B.V., Utrecht, the Netherlands
Simon Spronk
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
TriOpSys B.V., Utrecht, the Netherlands
Mark ter Linden
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Science and Technology (S[&]T), Delft, the Netherlands
Glen Jaross
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
David Haffner
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Pepijn Veefkind
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Pieternel F. Levelt
Atmospheric Chemistry Observations & Modeling Laboratory (ACOM), National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
R&D Satellite Observations, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Huan Yu, Isabelle De Smedt, Nicolas Theys, Maarten Sneep, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 18, 4131–4163, https://doi.org/10.5194/amt-18-4131-2025, https://doi.org/10.5194/amt-18-4131-2025, 2025
Short summary
Short summary
We introduce a new cloud retrieval algorithm using the O2–O2 absorption band at 477 nm to generate harmonized cloud datasets from OMI and TROPOMI. The algorithm improves upon the OMI O2–O2 operational cloud algorithm in several aspects. The new approach improves consistency in cloud parameters and NO2 retrievals between two sensors.
Robert James Duncan Spurr, Matt Christi, Nickolay Anatoly Krotkov, Won-Ei Choi, Simon Carn, Can Li, Natalya Kramarova, David Haffner, Eun-Su Yang, Nick Gorkavyi, Alexander Vasilkov, Krzysztof Wargan, Omar Torres, Diego Loyola, Serena Di Pede, Joris Pepijn Veefkind, and Pawan Kumar Bhartia
EGUsphere, https://doi.org/10.5194/egusphere-2025-2938, https://doi.org/10.5194/egusphere-2025-2938, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
An eruption of the submarine Hunga volcano injected a massive plume of water vapor, sulfur dioxide and aerosols into the Southern tropical stratosphere. The high-altitude Hunga aerosol plume showed up as strongly enhanced solar backscattered ultraviolet (BUV) radiation compromising satellite BUV ozone retrievals. In this paper, we have developed a new technique to retrieve the aerosol amount and height, based on satellite solar BUV radiances from the TROPOMI and OMPS nadir profiler instruments.
Serena Di Pede, Erwin Loots, Emiel van der Plas, Maarten Sneep, Edward van Amelrooy, Mirna van Hoek, Mark ter Linden, Antje Ludewig, Arno Keppens, and J. Pepijn Veefkind
EGUsphere, https://doi.org/10.5194/egusphere-2025-2167, https://doi.org/10.5194/egusphere-2025-2167, 2025
Short summary
Short summary
The Sentinel-5P is a satellite operated by the European Space Agency, carrying the TROPOspheric Monitoring Instrument (TROPOMI). This mission also produces atmospheric ozone profile data using measurements in the ultra-violet spectrum. Absolute spectra calibration is necessary to produce high quality ozone profile data. Soft-calibration is a technique used to obtain accurate input spectra for ozone profile retrievals. The new soft-calibration shows reduced size and less temporal/spectral bias.
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025, https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Short summary
The aerosol layer height (ALH) from the TROPOspheric Monitoring Instrument (TROPOMI) has been constantly improved since its release in 2019. Over bright surfaces, fitting the albedo improved the retrieval, as shown for a set of situations, ranging from multiple layers of smoke to thick desert dust plumes and low-altitude industrial pollution. The latest results of the operational ALH are compared to profiles from the ATmospheric LIDar (ATLID) on board the recently launched EarthCARE mission.
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025, https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Short summary
Currently, measurement of methane from the TROPOMI satellite is biased with respect to surface reflectance. This study demonstrates a new method of correcting for this bias on a seasonal timescale to allow for differences in surface reflectance in areas of intense agriculture where growing seasons may introduce a reflectance bias. We have successfully implemented this technique in the Denver–Julesburg basin, where agriculture and methane extraction infrastructure is often co-located.
Harikrishnan Charuvil Asokan, Jochen Landgraf, Pepijn Veefkind, Stijn Dellaert, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1071, https://doi.org/10.5194/egusphere-2025-1071, 2025
Short summary
Short summary
Greenhouse gases like CO2 and CH4 drive climate change. Satellites enable monitoring of these emissions from space. Our simulations show that the upcoming TANGO mission can detect about 500 targets per 4-day cycle under clear skies, but cloud cover reduces detection. Integrating cloud forecasts into TANGO’s maneuvering boosts detections, highlighting its potential for improving global emission monitoring.
Yutao Chen, Ronald J. van der A, Jieying Ding, Henk Eskes, Jason E. Williams, Nicolas Theys, Athanasios Tsikerdekis, and Pieternel F. Levelt
Atmos. Chem. Phys., 25, 1851–1868, https://doi.org/10.5194/acp-25-1851-2025, https://doi.org/10.5194/acp-25-1851-2025, 2025
Short summary
Short summary
There is a lack of local SO2 top-down emission inventories in India. With the improvement in the divergence method and the derivation of SO2 local lifetime, gridded SO2 emissions over a large area can be estimated efficiently. This method can be applied to any region in the world to derive SO2 emissions. Especially for regions with high latitudes, our methodology has the potential to significantly improve the top-down derivation of SO2 emissions.
Arno Keppens, Daan Hubert, José Granville, Oindrila Nath, Jean-Christopher Lambert, Catherine Wespes, Pierre-François Coheur, Cathy Clerbaux, Anne Boynard, Richard Siddans, Barry Latter, Brian Kerridge, Serena Di Pede, Pepijn Veefkind, Juan Cuesta, Gaelle Dufour, Klaus-Peter Heue, Melanie Coldewey-Egbers, Diego Loyola, Andrea Orfanoz-Cheuquelaf, Swathi Maratt Satheesan, Kai-Uwe Eichmann, Alexei Rozanov, Viktoria F. Sofieva, Jerald R. Ziemke, Antje Inness, Roeland Van Malderen, and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3746, https://doi.org/10.5194/egusphere-2024-3746, 2025
Short summary
Short summary
The first Tropospheric Ozone Assessment Report (TOAR) encountered discrepancies between several satellite sensors’ estimates of the distribution and change of ozone in the free troposphere. Therefore, contributing to the second TOAR, we harmonise as much as possible the observational perspective of sixteen tropospheric ozone products from satellites. This only partially accounts for the observed discrepancies, with a reduction of 10–40 % of the inter-product dispersion upon harmonisation.
Audrey Gaudel, Ilann Bourgeois, Meng Li, Kai-Lan Chang, Jerald Ziemke, Bastien Sauvage, Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Nadia Smith, Daan Hubert, Arno Keppens, Juan Cuesta, Klaus-Peter Heue, Pepijn Veefkind, Kenneth Aikin, Jeff Peischl, Chelsea R. Thompson, Thomas B. Ryerson, Gregory J. Frost, Brian C. McDonald, and Owen R. Cooper
Atmos. Chem. Phys., 24, 9975–10000, https://doi.org/10.5194/acp-24-9975-2024, https://doi.org/10.5194/acp-24-9975-2024, 2024
Short summary
Short summary
The study examines tropical tropospheric ozone changes. In situ data from 1994–2019 display increased ozone, notably over India, Southeast Asia, and Malaysia and Indonesia. Sparse in situ data limit trend detection for the 15-year period. In situ and satellite data, with limited sampling, struggle to consistently detect trends. Continuous observations are vital over the tropical Pacific Ocean, Indian Ocean, western Africa, and South Asia for accurate ozone trend estimation in these regions.
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024, https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050, https://doi.org/10.5194/gmd-15-7031-2022, https://doi.org/10.5194/gmd-15-7031-2022, 2022
Short summary
Short summary
We present an overview of the DISAMAR radiative transfer code, highlighting the novel semi-analytical derivatives for the doubling–adding formulae and the new DISMAS technique for weak absorbers. DISAMAR includes forward simulations and retrievals for satellite spectral measurements from 270 to 2400 nm to determine instrument specifications for passive remote sensing. It has been used in various Sentinel-4/5P/5 projects and in the TROPOMI aerosol layer height and ozone profile products.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys., 22, 10319–10351, https://doi.org/10.5194/acp-22-10319-2022, https://doi.org/10.5194/acp-22-10319-2022, 2022
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seasonal variability into consideration, and insights for future studies.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Jos van Geffen, Henk Eskes, Steven Compernolle, Gaia Pinardi, Tijl Verhoelst, Jean-Christopher Lambert, Maarten Sneep, Mark ter Linden, Antje Ludewig, K. Folkert Boersma, and J. Pepijn Veefkind
Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, https://doi.org/10.5194/amt-15-2037-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. It compares results with previous versions v1.2–v1.4 and with Ozone Monitoring Instrument (OMI) and ground-based measurements.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Ivar R. van der Velde, Guido R. van der Werf, Sander Houweling, Henk J. Eskes, J. Pepijn Veefkind, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 21, 597–616, https://doi.org/10.5194/acp-21-597-2021, https://doi.org/10.5194/acp-21-597-2021, 2021
Short summary
Short summary
This paper compares the relative atmospheric enhancements of CO and NO2 measured by the space-based instrument TROPOMI over different fire-prone ecosystems around the world. We find distinct spatial and temporal patterns in the ΔNO2 / ΔCO ratio that correspond to regional differences in combustion efficiency. This joint analysis provides a better understanding of regional-scale combustion characteristics and can help the fire modeling community to improve existing global emission inventories.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Cited articles
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov,
V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and
Measurement Modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2,
1999. a
Cebula, R. P., Park, H., and Heath, D. F.: Characterization of the Nimbus-7
SBUV Radiometer for the Long-Term Monitoring of Stratospheric Ozone, J. Atmos. Ocean. Tech., 5, 215–227,
https://doi.org/10.1175/1520-0426(1988)005<0215:cotnsr>2.0.co;2, 1988. a
CFConventions: NetCDF Climate and Forecast (CF) Metadata Conventions, Tech.
Rep. issue 1.6, CF Conventions, http://www.cfconventions.org (last access: 8 June 2022), 2011. a
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), Report 2011-1073, p. 26, U.S. Geological Survey,
https://doi.org/10.3133/ofr20111073, 2011. a
Dobber, M., Kleipool, Q., Dirksen, R., Levelt, P., Jaross, G., Taylor, S.,
Kelly, T., Flynn, L., Leppelmeier, G., and Rozemeijer, N.: Validation of
Ozone Monitoring Instrument level 1b data products, J. Geophys.
Res.-Atmos., 113, D15, https://doi.org/10.1029/2007JD008665, 2008a. a, b, c, d
Dobber, M., Voors, R., Dirksen, R., Kleipool, Q., and Levelt, P.: The
High-Resolution Solar Reference Spectrum between 250 and 550 nm and its
Application to Measurements with the Ozone Monitoring Instrument,
Sol. Phys., 249, 281–291, https://doi.org/10.1007/s11207-008-9187-7,
2008b. a, b
Dobber, M. R., Dirksen, R. J., Levelt, P. F., van den Oord, G. H. J., Voors, R.
H. M., Kleipool, Q., Jaross, G., Kowalewski, M., Hilsenrath, E., Leppelmeier,
G. W., de Vries, J., Dierssen, W., and Rozemeijer, N. C.: Ozone monitoring
instrument calibration, IEEE T. Geosci. Remote, 44, 1209–1238,
https://doi.org/10.1109/TGRS.2006.869987, 2006. a, b, c, d, e
ESIP: Attribute Conventions Dataset Discovery,
http://wiki.esipfed.org/index.php/Category:Attribute_Conventions_Dataset_Discovery (last access: 8 June 2022),
2022. a
HDFgroup: Hierarchical Data Format, https://www.hdfgroup.org/ (last access: 8 June 2022),
2021. a
Herman, J., Hudson, R., McPeters, R., Stolarski, R., Ahmad, Z., Gu, X.-Y.,
Taylor, S., and Wellemeyer, C.: A new self-calibration method applied to
TOMS/SBUV backscattered ultraviolet data to determine long-term global ozone
change, J. Geophys. Res., 96, 7531–7545, https://doi.org/10.1029/90JD02662, 1991. a
ISO: Geographic Information – Metadata, ISO 19115:2003(E) First Edition,
International Organization for Standardization (ISO), 2003. a
ISO: Geographic Information – Observations and Measurements, Iso
19156:2011(e), International Organization for Standardization (ISO), 2011. a
Jaross, G. and Krueger, A. J.: Ice radiance method for backscatter UV
instrument monitoring, in: Atmospheric Ozone, edited by: Henriksen, T.,
2047, 94–101, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.163469, 1993. a
JRC: INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO
19115 and EN ISO 19119, MD-IR-and-ISO-v1-2-20100616 issue 1.2, European
Commission Joint Research Centre (EC JRC), https://inspire.ec.europa.eu/documents/Metadata/INSPIRE_MD_IR_and_ISO_v1_2_20100616.pdf (last access: 8 June 2022), 2010. a
Kroon, M., Veefkind, J. P., Sneep, M., McPeters, R. D., Bhartia, P. K., and
Levelt, P. F.: Comparing OMI-TOMS and OMI-DOAS total ozone column data,
J. Geophys. Res.-Atmos., 113, D16,
https://doi.org/10.1029/2007JD008798, 2008. a
Levelt, P. F., van den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H.,
de Vries, J., Stammes, P., Lundell, J. O., and Saari, H.: The ozone
monitoring instrument, IEEE T. Geosci. Remote, 44, 1093–1101,
https://doi.org/10.1109/TGRS.2006.872333, 2006. a
Ludewig, A., Adrichem, D., Haffner, D., Harel, R., van Hoek, M., Jaross, G.,
Kleipool, Q., Leloux, J., Loots, E., van der Plas, E., and Rozemeijer, N.:
Algorithm Theoretical Basis Document for the collection 4 L01b data
processing of the Ozone Monitoring Instrument, AURA-OMI-KNMI-L01B-0002-SD
24170, Royal Netherlands Meteorological Institute (KNMI),
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OMI/AURA-OMI-KNMI-L01B-0002-SD-atbd-v024170-20210716.pdf (last access: 8 June 2022),
2021. a, b, c, d, e, f, g
Marchenko, S., DeLand, M., and Lean, J.: Solar spectral irradiance variability
in cycle 24: observations and models, J. Space Weather Spac., 6, A40,
https://doi.org/10.1051/swsc/2016036, 2016. a
McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer,
C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W.,
Taylor, S. L., Swissler, T., and Cebula, R. P.: Earth Probe Total Ozone
Mapping Spectrometer (TOMS) Data Product’s User’s Guide, NASA Technical
Publication 1998-206895, National Aeronautics and Space Administration
(NASA), https://ozoneaq.gsfc.nasa.gov/docs/epusrguide.pdf (last access: 8 June 2022), 1998. a
NASA: Solar eclipse website, https://eclipse.gsfc.nasa.gov/ (last access: 8 June 2022),
2021. a
OGC: Earth Observation Metadata profile of Observations Measurements, OGC
10-157r4 issue 1.0.3-DRAFT, Open Geospatial Consortium (OGC), http://www.opengis.net/doc/IS/eompom/1.1,
(last access 8 June 2022)
2014. a
OML1BIRR: OMI/Aura Level 1B Averaged Solar Irradiances V004,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AURA/OMI/DATA1401, 2021. a, b
OML1BRUG: OMI/Aura Level 1B UV Global Geolocated Earthshine Radiances V004,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AURA/OMI/DATA1402, 2021. a, b
OML1BRUZ: OMI/Aura Level 1B UV Zoom-in Geolocated Earthshine Radiances V004,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AURA/OMI/DATA1403, 2021. a, b
OML1BRVG: OMI/Aura Level 1B VIS Global Geolocated Earthshine Radiances V004,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AURA/OMI/DATA1404, 2021. a, b
OML1BRVZ: OMI/Aura Level 1B VIS Zoom-in Geolocated Earthshine Radiances V004,
Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/AURA/OMI/DATA1405, 2021. a, b
Rozemeijer, N.: Metadata specification for the collection 4 L01b data
processing of the Ozone Monitoring Instrument, AURA-OMI-KNMI-L01B-0007-SD
24148, Royal Netherlands Meteorological Institute (KNMI),
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OMI/AURA-OMI-KNMI-L01B-0007-SD-metadata_specs-v024148-20210702.pdf (last access: 10 June 2022),
2021. a
Rozemeijer, N., Adrichem, D., Haffner, D., Harel, R., van Hoek, M., Jaross, G.,
Kleipool, Q., Leloux, J., Loots, E., Ludewig, A., and van der Plas, E.: Input
output data specification for the collection 4 L01b data processing of the
Ozone Monitoring Instrument, AURA-OMI-KNMI-L01B-0005-SD 24148, Royal
Netherlands Meteorological Institute (KNMI),
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OMI/AURA-OMI-KNMI-L01B-0005-SD-iods-v024148-20210702.pdf (last access: 10 June 2022),
2021. a, b
Schenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. C., Veefkind, J. P., and Levelt, P. F.: In-flight performance of the Ozone Monitoring Instrument, Atmos. Meas. Tech., 10, 1957–1986, https://doi.org/10.5194/amt-10-1957-2017, 2017. a, b, c
Schoeberl, M., Douglass, A., Hilsenrath, E., Bhartia, P., Beer, R., Waters, J.,
Gunson, M., Froidevaux, L., Gille, J., Barnett, J., Levelt, P., and DeCola,
P.: Overview of the EOS Aura mission,
IEEE
T. Geosci. Remote, 44, 1066–1074, https://doi.org/10.1109/TGRS.2005.861950, 2006. a
Stammes, P., Levelt, P. F., de Vries, J., Visser, H., Kruizinga, B.,
Smorenburg, K., Leppelmeier, G. W., and Hilsenrath, E.: Scientific
requirements and optical design of the ozone monitoring instrument on
EOS-CHEM, in: Earth Observing Systems IV, edited by: Barnes, W. L.,
3750, 221–232, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.363517, 1999. a
Unidata: Network Common Data Format,
http://www.unidata.ucar.edu/software/netcdf/docs/ (last access: 10 June 2022), 2021. a
van den Oord, G., Rozemeijer, N., Schenkelaars, V., Levelt, P., Dobber, M.,
Voors, R., Claas, J., de Vries, J., ter Linden, M., De Haan, C., and van de
Berg, T.: OMI level 0 to 1b processing and operational aspects, IEEE
T. Geosci. Remote, 44, 1380–1397,
https://doi.org/10.1109/TGRS.2006.872935, 2006. a
Veefkind, J., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G.,
Claas, J., Eskes, H., de Haan, J., Kleipool, Q., van Weele, M., Hasekamp, O.,
Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R.,
Kruizinga, B., Vink, R., Visser, H., and Levelt, P.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations of the
atmospheric composition for climate, air quality and ozone layer
applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012. a
Wellemeyer, C., Taylor, S., Jaross, G., DeLand, M., Seftor, C., Labow, G.,
Swissler, T., and Cebula, R.: Final report on Nimbus-7 TOMS version 7
calibration, Nasa contractor rep. 4717, NASA, https://ntrs.nasa.gov/api/citations/19960021250/downloads/19960021250.pdf
(last access: 10 June 2022), 1996. a
Short summary
A new collection-4 dataset for the Ozone Monitoring Instrument (OMI) mission has been established to supersede the current collection-3 level-1b (L1b) data, produced with a newly developed L01b data processor based on the TROPOspheric Monitoring Instrument (TROPOMI) L01b processor. The collection-4 L1b data have a similar output format to the TROPOMI L1b data for easy connection of the data series. Many insights from the TROPOMI algorithms, as well as from OMI collection-3 usage, were included.
A new collection-4 dataset for the Ozone Monitoring Instrument (OMI) mission has been...