Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4407-2022
https://doi.org/10.5194/amt-15-4407-2022
Peer-reviewed comment
 | 
29 Jul 2022
Peer-reviewed comment |  | 29 Jul 2022

Comment on “Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products” by Schneider et al. (2022)

Simone Ceccherini

Related authors

Optimal variables for retrieval products
Simone Ceccherini
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-42,https://doi.org/10.5194/amt-2023-42, 2023
Revised manuscript not accepted
Short summary
An improved formula for the complete data fusion
Simone Ceccherini, Nicola Zoppetti, and Bruno Carli
Atmos. Meas. Tech., 15, 7039–7048, https://doi.org/10.5194/amt-15-7039-2022,https://doi.org/10.5194/amt-15-7039-2022, 2022
Short summary
Synergistic retrieval and complete data fusion methods applied to simulated FORUM and IASI-NG measurements
Marco Ridolfi, Cecilia Tirelli, Simone Ceccherini, Claudio Belotti, Ugo Cortesi, and Luca Palchetti
Atmos. Meas. Tech., 15, 6723–6737, https://doi.org/10.5194/amt-15-6723-2022,https://doi.org/10.5194/amt-15-6723-2022, 2022
Short summary
Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022,https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021,https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024,https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024,https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024,https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Accounting for the effect of aerosols in GHGSat methane retrieval
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024,https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Diego Loyola, Hanlim Lee, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1137,https://doi.org/10.5194/egusphere-2024-1137, 2024
Short summary

Cited articles

Ceccherini, S.: Equivalence of measurement space solution data fusion and complete fusion, J. Quant. Spectrosc. Ra., 182, 71–74, 2016. 
Ceccherini, S., Raspollini, P., and Carli, B.: Optimal use of the information provided by indirect measurements of atmospheric vertical profiles, Opt. Express., 17, 4944–4958, 2009. 
Ceccherini, S., Carli, B., and Raspollini, P.: Quality quantifier of indirect measurements, Opt. Express, 20, 5151–5167, 2012. 
Ceccherini, S., Carli, B., and Raspollini, P.: Equivalence of data fusion and simultaneous retrieval, Opt. Express, 23, 8476–8488, 2015. 
Fisher, R. A.: The logic of inductive inference, J. R. Stat. Soc., 98, 39–54, 1935. 
Short summary
The equivalence between the data fusion performed using the Kalman filter and the Complete Data Fusion has been proved, and a generalization of the Complete Data Fusion formula, that is valid also in the case that the noise error covariance matrices of the fused products are singular, is derived. The two methods are also equivalent to the measurement–space–solution data fusion method, and for moderately nonlinear problems, the three methods are all equivalent to the simultaneous retrieval.