Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5701-2022
https://doi.org/10.5194/amt-15-5701-2022
Research article
 | 
12 Oct 2022
Research article |  | 12 Oct 2022

Ice water path retrievals from Meteosat-9 using quantile regression neural networks

Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh

Related authors

The Chalmers Cloud Ice Climatology: Retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1953,https://doi.org/10.5194/egusphere-2023-1953, 2023
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024,https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024,https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024,https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary

Cited articles

AERIS/ICARE Data and Services Center: ICARE On-line Data Archive, ftp://ftp.icare.univ-lille1.fr/SPACEBORNE/MULTI_SENSOR/DARDAR_CLOUD.v2.1.1 (last access: 29 September 2022), 2019. a
Amell, A.: Ice water path retrievals from Meteosat-9 with quantile regression neural networks: code and models, Zenodo [code], https://doi.org/10.5281/zenodo.6570587, 2022a. a
Amell, A.: Ice water path retrievals from Meteosat-9 with quantile regression neural networks: video supplement, Zenodo [video], https://doi.org/10.5281/zenodo.6639443, 2022b. a
Aminou, D. M. A., Jacquet, B., and Pasternak, F.: Characteristics of the Meteosat Second Generation (MSG) radiometer/imager: SEVIRI, in: Sensors, Systems, and Next-Generation Satellites, edited by: Fujisada, H., International Society for Optics and Photonics, SPIE, 3221, 19–31, https://doi.org/10.1117/12.298084, 1997. a
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, 2017. a, b, c, d
Download
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.