Articles | Volume 15, issue 3
https://doi.org/10.5194/amt-15-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results
Brian J. Carroll
CORRESPONDING AUTHOR
NASA Postdoctoral Program, NASA Langley Research Center,
Hampton, VA, United States
NASA Langley Research Center, Hampton, VA, United States
Susan A. Kooi
Science Systems and Applications, Inc., Hampton, VA, United States
James E. Collins
Science Systems and Applications, Inc., Hampton, VA, United States
Rory A. Barton-Grimley
NASA Langley Research Center, Hampton, VA, United States
Anthony Notari
NASA Langley Research Center, Hampton, VA, United States
David B. Harper
NASA Langley Research Center, Hampton, VA, United States
Joseph Lee
NASA Langley Research Center, Hampton, VA, United States
Related authors
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Richard Ferrare, Johnathan Hair, Taylor Shingler, Chris Hostetler, Amin Nehrir, Marta Fenn, Amy Jo Scarino, Sharon Burton, Marian Clayton, James Collins, Laura Judd, James Crawford, Katherine Travis, Travis Toth, Pablo Saide, Jose Luis Jimenez, Pedro Campuzano-Jost, Guy Symonds, Richard Moore, Luke Ziemba, Michael Shook, Glenn Diskin, Joshua P. DiGangi, Ryan Bennett, Chia-hsiang Ho, Lim-seok Chang, Adisak Aiampisanuvong, and Ittipol Pawarmart
EGUsphere, https://doi.org/10.5194/egusphere-2025-4812, https://doi.org/10.5194/egusphere-2025-4812, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a new method to retrieve atmospheric particulate matter concentrations using only airborne High Spectral Resolution Lidar measurements in machine learning algorithms. Retrieved concentrations agree well with surface measurements. These concentrations and our estimates of the particle mass extinction efficiency are also consistent with those retrieved from airborne in situ measurements. This methodology can also be applied to the Atmosphere Lidar on the EarthCARE satellite.
Dimitri Trapon, Holger Baars, Athena Augusta Floutsi, Sebastian Bley, Moritz Haarig, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 18, 3873–3896, https://doi.org/10.5194/amt-18-3873-2025, https://doi.org/10.5194/amt-18-3873-2025, 2025
Short summary
Short summary
The study highlights how aerosol measurements from aircraft can be used in synergy with ground-based observations to validate the European Space Agency's Aeolus satellite aerosol product above the tropical Atlantic. For the first time, collocated sections of the troposphere up to 626 km long are crossed. Combining measurements from satellite, aircraft, and ground-based instruments allows characterization of the optical properties of the observed dust particles emitted from the Sahara.
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025, https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Hiren T. Jethva, Omar Torres, Richard A. Ferrare, Sharon P. Burton, Anthony L. Cook, David B. Harper, Chris A. Hostetler, Jens Redemann, Vinay Kayetha, Samuel LeBlanc, Kristina Pistone, Logan Mitchell, and Connor J. Flynn
Atmos. Meas. Tech., 17, 2335–2366, https://doi.org/10.5194/amt-17-2335-2024, https://doi.org/10.5194/amt-17-2335-2024, 2024
Short summary
Short summary
We introduce a novel synergy algorithm applied to ORALCES airborne measurements of above-cloud aerosol optical depth and UV–Vis satellite observations from OMI and MODIS to retrieve spectral aerosol single-scattering albedo of lofted layers of carbonaceous smoke aerosols over clouds. The development of the proposed aerosol–cloud algorithm implies a possible synergy of CALIOP and OMI–MODIS passive sensors to deduce a global product of AOD and SSA of absorbing aerosols above clouds.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Cited articles
Abshire, J. B., Riris, H., Weaver, C. J., Mao, J., Allan, G. R.,
Hasselbrack, W. E., and Browell, E. V.: Airborne measurements of CO2
column absorption and range using a pulsed direct-detection integrated path
differential absorption lidar, Appl. Optics, 52, 4446–4461, 2013.
Amediek, A., Ehret, G., Fix, A., Wirth, M., Büdenbender, C.,
Quatrevalet, M., Kiemle, C., and Gerbig, C.: CHARM-F–a new airborne
integrated-path differential-absorption lidar for carbon dioxide and methane
observations: measurement performance and quantification of strong point
source emissions, Appl. Optics, 56, 5182–5197, 2017.
Ansmann, A.: Errors in ground-based water-vapor DIAL measurements due to
Doppler-broadened Rayleigh backscattering, Appl. Optics, 24, 3476–3480, 1985.
Ansmann, A. and Bosenberg, J.: Correction scheme for spectral broadening by
Rayleigh scattering in differential absorption lidar measurements of water
vapor in the troposphere, Appl. Optics, 26, 3026–3032, 1987.
Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B., Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., and Skofronick-Jackson, G.: Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign, Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, 2021.
Bedka, S., Knuteson, R., Revercomb, H., Tobin, D., and Turner, D.: An
assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5
precipitable water vapor product at tropical, midlatitude, and arctic
ground-truth sites: September 2002 through August 2008, J. Geophys. Res., 115, D17310, https://doi.org/10.1029/2009JD013139, 2010.
Behrendt, A., Wulfmeyer, V., Schaberl, T., Bauer, H. S., Kiemle, C., Ehret,
G., Flamant, C., Kooi, S., Ismail, S., Ferrare, R., and Browell, E. V.:
Intercomparison of water vapor data measured with lidar during
IHOP_2002. Part II: Airborne-to-airborne systems, J. Atmos. Ocean. Tech., 24, 22–39, 2007.
Birk, M., Wagner, G., Loos, J., Lodi, L., Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., and Tennyson, J.: Accurate line intensities for water transitions in the infrared: comparison of theory and experiment, J. Quant. Spectrosc. Ra., 203, 88–102, 2017.
Black, P., Harrison, L., Beaubien, M., Bluth, R., Woods, R., Penny, A.,
Smith, R. W., and Doyle, J. D.: High-definition Sounding System (HDSS) for
atmospheric profiling, J. Atmos. Ocean. Tech., 34, 777–796, 2017.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S.,
Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., and
Randall, D. A.: How well do we understand and evaluate climate change
feedback processes?, J. Climate, 19, 3445–3482, 2006.
Bony, S., Stevens, B., Frierson, D. M., Jakob, C., Kageyama, M., Pincus, R.,
Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H. and Watanabe,
M.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, 2015.
Bösenberg, J.: Ground-based differential absorption lidar for
water-vapor and temperature profiling: methodology, Appl. Optics, 37, 3845–3860, 1998.
Browell, E. V.: Remote sensing of tropospheric gases and aerosols with an
airborne DIAL system, in: Optical and Laser Remote Sensing, edited by: Killinger, D. K. and Mooradian A., Springer, Berlin, Heidelberg, Germany, 138–147, https://doi.org/10.1007/978-3-540-39552-2_18, 1983.
Browell, E. V., Ismail, S., and Grant, W. B.: Differential absorption lidar
(DIAL) measurements from air and space, Appl. Phys. B, 67, 399–410, 1998.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Carroll, B. J., Demoz, B. B., Turner, D. D., and Delgado, R.: Lidar observations of a mesoscale moisture transport event impacting convection and comparison to Rapid Refresh model analysis, Mon. Weather Rev., 149, 463–477,
2021.
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C., Blaisdell, J., Chen, L., Fetzer, E. J., Goldberg, M., Gautier, C., and Granger, S.: AIRS: Improving weather forecasting and providing new data on greenhouse gases, B. Am. Meteorol. Soc., 87, 911–926, 2006.
Chazette, P., Marnas, F., Totems, J., and Shang, X.: Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs, Atmos. Chem. Phys., 14, 9583–9596, https://doi.org/10.5194/acp-14-9583-2014, 2014.
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009.
Cooney, J.: Remote measurements of atmospheric water vapor profiles using
the Raman component of laser backscatter, J. Appl. Meteorol., 9, 182–184, 1970.
Davis, K. J., Browell, E. V., Feng, S., Lauvaux, T., Obland, M. D., Pal, S.,
Baier, B. C., Baker, D. F., Baker, I. T., Barkley, Z. R., and Bowman, K. W.: The Atmospheric Carbon and Transport (ACT)-America Mission, B. Am. Meteorol. Soc., 102, E1714–E1734, 2021.
Diao, M., Jumbam, L., Sheffield, J., Wood, E. F., and Zondlo, M. A.: Validation of AIRS/AMSU-A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87∘N–67∘S, J. Geophys. Res.-Atmos., 118, 6816–6836, 2013.
Diskin, G. S., Podolske, J. R., Sachse, G. W., and Slate, T. A.: Open-path
airborne tunable diode laser hygrometer, Diode Lasers and Applications in
Atmospheric Sensing, Proc. SPIE, 4817, 9 pp., https://doi.org/10.1117/12.453736, 2002.
Dobler, J. T., Harrison, F. W., Browell, E. V., Lin, B., McGregor, D., Kooi,
S., Choi, Y., and Ismail, S.: Atmospheric CO2 column measurements with an
airborne intensity-modulated continuous wave 1.57 µm fiber laser
lidar, Appl. Optics, 52, 2874–2892, 2013.
Doyle, J. D., Moskaitis, J. R., Feldmeier, J. W., Ferek, R. J., Beaubien,
M., Bell, M. M., Cecil, D. L., Creasey, R. L., Duran, P., Elsberry, R. L.,
Komaromi, W. A., Molinari, J., Ryglicki, D. R., Stern, D. P., Velden, C. S.,
Wang, X., Allen, T., Barrett, B. S., Black, P. G., Dunion, J. P., Emanuel,
K. A., Harr, P. A., Harrison, L., Hendricks, E. A., Herndon, D., Jeffries,
W. Q., Majumdar, S. J., Moore, J. A., Pu, Z., Rogers, R. F., Sanabia, E. R.,
Tripoli, G. J., and Zhang, D.: A View of Tropical Cyclones from Above: The
Tropical Cyclone Intensity Experiment, B. Am. Meteorol. Soc., 98,
2113–2134, https://doi.org/10.1175/BAMSD-16-0055.1, 2017.
Ehret, G., Kiemle, C., Renger, W., and Simmet, G.: Airborne remote sensing of
tropospheric water vapor with a near–infrared differential absorption lidar
system, Appl. Optics, 32, 4534–4551, 1993.
Eichinger, W. E., Cooper, D. I., Forman, P. R., Griegos, J., Osborn, M. A.,
Richter, D., Tellier, L. L., and Thornton, R.: The development of a scanning
Raman water vapor lidar for boundary layer and tropospheric observations, J. Atmos. Ocean. Tech., 16, 1753–1766, 1999.
Fan, L., Zhang, Y., Chen, S., Guo, P., and Chen, H.: Rayleigh-backscattering doppler broadening correction for differential absorption lidar, in: Selected Papers of the Photoelectronic Technology Committee Conferences, June–July 2015, International Society for Optics and Photonics, Proc. SPIE, 9795, p. 979517, 2015.
Ferrare, R. A., Browell, E. V., Ismail, S., Kooi, S. A., Brasseur, L. H.,
Brackett, V. G., Clayton, M. B., Barrick, J. D. W., Diskin, G. S., Goldsmith,
J. E. M., and Lesht, B. M.: Characterization of upper-troposphere water vapor
measurements during AFWEX using LASE, J. Atmos. Ocean. Tech., 21, 1790–1808, 2004.
Ferreira, A. P., Nieto, R., and Gimeno, L.: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive, Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan,
K.: The modern-era retrospective analysis for research and applications,
version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Gettelman, A., Weinstock, E. M., Fetzer, E. J., Irion, F. W., Eldering, A.,
Richard, E. C., Rosenlof, K. H., Thompson, T. L., Pittman, J. V., Webster, C. R., and Herman, R. L.: Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments, Geophys. Res. Lett., 31, L22107, https://doi.org/10.1029/2004GL020730, 2004.
Goldsmith, J. E. M., Blair, F. H., Bisson, S. E., and Turner, D. D.: Turn-key
Raman lidar for profiling atmospheric water vapor, clouds, and aerosols, Appl. Optics, 37, 4979–4990, 1998.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., and Drouin, B. J.:
The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, 2017.
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne high spectral resolution lidar for profiling aerosol optical properties, Appl. Optics, 47, 6734–6752, 2008.
Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H.,
Maruyama, H., Masaharu, H., Holland, P., Payne, J., Bryant, N. A., and Logan,
T. L.: The global land one-kilometer base elevation (GLOBE) digital elevation
model, version 1.0, National Oceanic and Atmospheric Administration,
National Geophysical Data Center, https://www.ngdc.noaa.gov/mgg/topo/globe.html (last access: 1 August 2007), 1999.
Higdon, N. S., Browell, E. V., Ponsardin, P., Grossmann, B. E., Butler, C. F., Chyba, T. H., Mayo, M. N., Allen, R. J., Heuser, A. W., Grant, W. B., and Ismail, S.: Airborne differential absorption lidar system for measurements of
atmospheric water vapor and aerosols, Appl. Optics, 33, 6422–6438, 1994.
Hilton, F., Atkinson, N. C., English, S. J., and Eyre, J. R.: Assimilation of
IASI at the Met Office and assessment of its impact through observing system
experiments, Q. J. Roy. Meteor. Soc., 135, 495–505, 2009.
Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy-Peyret,
C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P. F., and Collard, A.:
Hyperspectral Earth observation from IASI: Five years of accomplishments, B. Am. Meteorol. Soc., 93, 347–370, 2012.
Hodges, J. T., Lisak, D., Lavrentieva, N., Bykov, A., Sinitsa, L., Tennyson,
J., Barber, R. J., and Tolchenov, R. N.: Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra, J. Mol. Spectrosc., 249, 86–94, 2008.
Ismail, S. and Browell, E. V.: Airborne and spaceborne lidar measurements of
water vapor profiles: a sensitivity analysis, Appl. Optics, 28, 3603–3615, 1989.
Ismail, S., Ferrare, R. A., Browell, E. V., Chen, G., Anderson, B., Kooi,
S. A., Notari, A., Butler, C. F., Burton, S., Fenn, M., and Dunion, J. P.: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances, J. Atmos. Sci., 67, 1026–1047, 2010.
Kavaya, M. J., Beyon, J. Y., Koch, G. J., Petros, M., Petzar, P. J., Singh,
U. N., Trieu, B. C., and Yu, J.: The Doppler Aerosol Wind (DAWN) Airborne,
Wind-Profiling Coherent-Detection Lidar System: Overview and Preliminary
Flight Results, J. Atmos. Ocean. Tech., 31, 826–842,
https://doi.org/10.1175/JTECH-D-12-00274.1, 2014.
Kiemle, C., Groß, S., Wirth, M., and Bugliaro, L.: Airborne lidar
observations of water vapor variability in tropical shallow convective
environment, in: Shallow Clouds, Water Vapor, Circulation, and Climate
Sensitivity, Springer International Publishing, 253–271, 2017.
Klaes, K. D., Cohen, M., Buhler, Y., Schlüssel, P., Munro, R., Luntama,
J. P., von Engeln, A., Clérigh, E. Ó., Bonekamp, H., Ackermann, J., and Schmetz, J.: An introduction to the EUMETSAT polar system, B. Am. Meteorol. Soc., 88, 1085–1096, https://doi.org/10.1175/BAMS-88-7-1085, 2007.
Leblanc, T., McDermid, I. S., and Walsh, T. D.: Ground-based water vapor raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring, Atmos. Meas. Tech., 5, 17–36, https://doi.org/10.5194/amt-5-17-2012, 2012.
Le Marshall, J., Jung, J., Derber, J., Chahine, M., Treadon, R., Lord, S. J.,
Goldberg, M., Wolf, W., Liu, H. C., Joiner, J., and Woollen, J.: Improving
global analysis and forecasting with AIRS, B. Am. Meteorol. Soc., 87, 891–894, 2006.
Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell, K.,
Winker, D., and Hu, Y.: Estimating random errors due to shot noise in
backscatter lidar observations, Appl. Optics, 45, 4437–4447, 2006.
Martins, J. P., Teixeira, J., Soares, P. M., Miranda, P. M., Kahn, B. H., Dang, V. T., Irion, F. W., Fetzer, E. J., and Fishbein, E.: Infrared sounding of the trade-wind boundary layer: AIRS and the RICO experiment, Geophys. Res. Lett., 37, L24806, https://doi.org/10.1029/2010GL045902, 2010.
Moore, A. S., Brown, K. E., Hall, W. M., Barnes, J. C., Edwards, W. C., Petway, L. B., Little, A. D., Luck, W. S., Jones, I. W., Antill, C.W., and Browell, E. V.: Development of the Lidar Atmospheric Sensing Experiment (LASE) – an advanced airborne DIAL instrument, in: Advances in Atmospheric Remote Sensing with Lidar, Springer, Berlin, Germany, 281–288, 1997.
NASA/LARC/SD/ASDC: Aeolus CalVal HALO Aerosol and Water Vapor Profiles and
Images, NASA Langley Atmospheric Science Data Center DAAC [data set],
https://doi.org//10.5067/SUBORBITAL/AEOLUSCALVAL2019/DATA001, 2020.
Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J.
A.: Water Vapor Profiling Using a Widely Tunable, Amplified
Diode-Laser-Based Differential Absorption Lidar (DIAL), J. Atmos. Ocean. Tech., 26, 733–745, 2009.
Nehrir, A. R., Repasky, K. S., and Carlsten, J. L.: Eye-safe
diode-laser-based micropulse differential absorption lidar (DIAL) for water
vapor profiling in the lower troposphere, J. Atmos. Ocean. Tech., 28, 131–147, 2011.
Nehrir, A. R., Repasky, K. S., and Carlsten, J. L.: Micropulse water vapor
differential absorption lidar: transmitter design and performance, Opt.
Express, 20, 25137–25151, 2012.
Nehrir, A. R., Kiemle, C., Lebsock, M. D., Kirchengast, G., Buehler, S. A.,
Löhnert, U., Liu, C. L., Hargrave, P. C., Barrera-Verdejo, M., and Winker, D. M.: Emerging technologies and synergies for airborne and space-based measurements of water vapor profiles, Surv. Geophys., 38, 1445–1482, 2017.
Philbrick, C. R.: Raman lidar measurements of atmospheric properties, in:
Atmospheric Propagation and Remote Sensing III, edited by: Flood, W. A. and Miller, W. B., SPIE, 2222, 922–931, 1994.
Podolske, J. R., Sachse, G. W., and Diskin, G. S.: Calibration and data
retrieval algorithms for the NASA Langley/Ames Diode Laser Hygrometer for
the NASA transport and chemical evolution over the pacific (TRACE-P)
mission, J. Geophys. Res., 108, 8792, https://doi.org/10.1029/2002JD003156, 2003.
Remsberg, E. E. and Gordley, L. L.: Analysis of differential absorption lidar
from the Space Shuttle, Appl. Optics, 17, 624–630, 1978.
Richardson, M. T., Thompson, D. R., Kurowski, M. J., and Lebsock, M. D.: Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy, Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, 2021.
Roman, J., Knuteson, R., August, T., Hultberg, T., Ackerman, S., and
Revercomb, H.: A global assessment of NASA AIRS v6 and EUMETSAT IASI v6
precipitable water vapor using ground-based GPS SuomiNet stations, J. Geophys. Res.-Atmos., 121, 8925–8948, 2016.
Schäfler, A., Fix, A., and Wirth, M.: Mixing at the extratropical tropopause as characterized by collocated airborne H2O and O3 lidar observations, Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021, 2021.
Schotland, R. M.: Errors in the lidar measurement of atmospheric gases by
differential absorption, J. Appl. Meteorol., 13, 71–77, 1974.
Sherwood, S. C., Roca, R., Weckwerth, T. M., and Andronova, N. G.: Tropospheric water vapor, convection, and climate, Rev. Geophys., 48, RG2001, https://doi.org/10.1029/2009RG000301, 2010.
Späth, F., Behrendt, A., Muppa, S. K., Metzendorf, S., Riede, A., and Wulfmeyer, V.: 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar, Atmos. Meas. Tech., 9, 1701–1720, https://doi.org/10.5194/amt-9-1701-2016, 2016.
Späth, F., Behrendt, A., and Wulfmeyer, V.: Minimization of the
Rayleigh-Doppler error of differential absorption lidar by frequency tuning:
a simulation study, Opt. Express, 28, 30324–30339, 2020.
Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., and Nehrir, A. R.: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor, Atmos. Meas. Tech., 8, 1073–1087, https://doi.org/10.5194/amt-8-1073-2015, 2015.
Spuler, S. M., Hayman, M., Stillwell, R. A., Carnes, J., Bernatsky, T., and Repasky, K. S.: MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling, Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, 2021.
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen, L.,
Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., and
Meynart, R.: The atmospheric dynamics mission for global wind field
measurement, B. Am. Meteorol. Soc., 86, 73–88, 2005.
Teixeira, J., Piepmeier, J. R., Nehrir, A. R., Ao, C. O., Chen, S. S.,
Clayson, C. A., Fridlind, A. M., Lebsock, M., McCarty, W., Salmun, H.,
Santanello, J. A., Turner, D. D., Wang, Z., and Zeng, X.: Toward a Global
Planetary Boundary Layer Observing System, The NASA PBL Incubation Study
Team Report, 134 pp., 2021.
Thrastarson, H. T., Manning, E., Kahn, B., Fetzer, E., Yue, Q., Wong, S.,
Kalmus, P., Payne, V., Wang, T., Olsen, E. T., Wilson, R. C., Blaisdell, J., Iredell, L., Susskind, J., Warner, J., and Cady-Pereira, K.: AIRS/AMSU/HSB Version 7 Level 2 Product User Guide, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2020.
Thompson, D. R., Kahn, B. H., Brodrick, P. G., Lebsock, M. D., Richardson, M., and Green, R. O.: Spectroscopic imaging of sub-kilometer spatial structure in lower-tropospheric water vapor, Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, 2021.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D.,
Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M.,
Soden, B., and Zhai, P.: Observations: Surface and atmospheric climate change, chap. 3, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 236–336, 2007.
Turner, D. D. and Löhnert, U.: Ground-based temperature and humidity profiling: combining active and passive remote sensors, Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, 2021.
Wakimoto, R. M., Murphey, H. V., Browell, E. V., and Ismail, S.: The “triple
point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE
analyses of the frontal boundaries and convection initiation, Mon. Weather Rev., 134, 231–250, 2006.
Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: Raman lidar system for the
measurement of water vapor and aerosols in the Earth's atmosphere, Appl. Optics, 31, 3068–3082, 1992.
Wirth, M., Fix, A., Mahnke, P., Schwarzer, H., Schrandt, F., and Ehret, G.:
The airborne multi-wavelength water vapor differential absorption lidar
WALES: system design and performance, Appl. Phys. B, 96, 201–213, 2009.
Wong, S., Fetzer, E. J., Schreier, M., Manipon, G., Fishbein, E. F., Kahn,
B. H., Yue, Q., and Irion, F. W.: Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity, J. Geophys. Res.-Atmos., 120, 1880–1901, 2015.
Wu, Y., Nehrir, A. R., Ren, X., Dickerson, R. R., Huang, J., Stratton, P. R.,
Gronoff, G., Kooi, S. A., Collins, J. E., Berkoff, T. A., and Lei, L.:
Synergistic aircraft and ground observations of transported wildfire smoke
and its impact on air quality in New York City during the summer 2018 LISTOS
campaign, Sci. Total Environ., 773, 145030, https://doi.org/10.1016/j.scitotenv.2021.145030, 2021.
Wulfmeyer, V.: Ground-based differential absorption lidar for water-vapor
and temperature profiling: development and specifications of a
high-performance laser transmitter, Appl. Optics, 37, 3804–3824, 1998.
Wulfmeyer, V. and Bösenberg, J.: Ground-based differential absorption
lidar for water-vapor profiling: assessment of accuracy, resolution, and
meteorological applications, Appl. Optics, 37, 3825–3844, 1998.
Wulfmeyer, V., Bauer, H. S., Grzeschik, M., Behrendt, A., Vandenberghe, F.,
Browell, E. V., Ismail, S., and Ferrare, R. A.: Four-dimensional variational
assimilation of water vapor differential absorption lidar data: The first
case study within IHOP_2002, Mon. Weather Rev., 134, 209–230, 2006.
Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., Van Baelen, J., and Zus, F.: A review of the remote sensing of lower tropospheric thermodynamic profiles and its
indispensable role for the understanding and the simulation of water and
energy cycles, Rev. Geophys., 53, 819–895, 2015.
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
HALO is a recently developed lidar system that demonstrates new technologies and advanced...