Articles | Volume 16, issue 6
https://doi.org/10.5194/amt-16-1539-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-1539-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrievals of precipitable water vapor and aerosol optical depth from direct sun measurements with EKO MS711 and MS712 spectroradiometers
Congcong Qiao
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Song Liu
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Xihan Mu
State Key Laboratory of Remote Sensing Science, Faculty of
Geographical Science, Beijing Normal University, Beijing, 100875, China
Ping Wang
Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3731 GA, the
Netherlands
Shengjie Jia
Beijing Keytec Technology Co., Ltd., Beijing, 100029, China
Xuehua Fan
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Minzheng Duan
CORRESPONDING AUTHOR
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Related authors
No articles found.
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024, https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024, https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Short summary
ATLID (atmospheric lidar) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European–Japanese satellite mission that was launched in May 2024. ATLID is an advanced lidar optimized for cloud and aerosol property profile measurements. This paper describes some of the key novel algorithms being applied to this lidar to retrieve cloud and aerosol properties. Example results based on simulated data are presented and discussed.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-40, https://doi.org/10.5194/amt-2024-40, 2024
Preprint under review for AMT
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we measured that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050, https://doi.org/10.5194/gmd-15-7031-2022, https://doi.org/10.5194/gmd-15-7031-2022, 2022
Short summary
Short summary
We present an overview of the DISAMAR radiative transfer code, highlighting the novel semi-analytical derivatives for the doubling–adding formulae and the new DISMAS technique for weak absorbers. DISAMAR includes forward simulations and retrievals for satellite spectral measurements from 270 to 2400 nm to determine instrument specifications for passive remote sensing. It has been used in various Sentinel-4/5P/5 projects and in the TROPOMI aerosol layer height and ozone profile products.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 15, 3121–3140, https://doi.org/10.5194/amt-15-3121-2022, https://doi.org/10.5194/amt-15-3121-2022, 2022
Short summary
Short summary
Cloud shadows are observed by the TROPOMI satellite instrument as a result of its high spatial resolution. These shadows contaminate TROPOMI's air quality measurements, because shadows are generally not taken into account in the models that are used for aerosol and trace gas retrievals. We present the Detection AlgoRithm for CLOud Shadows (DARCLOS) for TROPOMI, which is the first cloud shadow detection algorithm for a satellite spectrometer.
Siming Zheng, Juan Huo, Wenbing Cai, Yinhui Zhang, Peng Li, Gaoyuan Zhang, Baofeng Ji, Jiafeng Zhou, and Congzheng Han
Atmos. Meas. Tech., 15, 1675–1687, https://doi.org/10.5194/amt-15-1675-2022, https://doi.org/10.5194/amt-15-1675-2022, 2022
Short summary
Short summary
We demonstrated the processing of millimeter wave link data with a time resolution of 1 min for 60 dry periods from August 2020 to July 2021. We have proposed a new method for extracting water vapor attenuation values and applied this method to data processing within this year. We found that the water vapor density value obtained from the millimeter wave link is highly correlated with the actual measurement value of the weather station.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021, https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Short summary
The SEVIRI instrument flown on the European geostationary Meteosat satellites acquires multi-spectral images at a relatively coarse pixel resolution of 3 × 3 km2, but it also has a broadband high-resolution visible channel with 1 × 1 km2 spatial resolution. In this study, the modification of an existing cloud property and solar irradiance retrieval to use this channel to improve the spatial resolution of its output products as well as the resulting benefits for applications are described.
Victor Trees, Ping Wang, and Piet Stammes
Atmos. Chem. Phys., 21, 8593–8614, https://doi.org/10.5194/acp-21-8593-2021, https://doi.org/10.5194/acp-21-8593-2021, 2021
Short summary
Short summary
Given the time and location of a point on the Earth's surface, we explain how to compute the wavelength-dependent obscuration during solar eclipses. We restore the top-of-atmosphere reflectances and the absorbing aerosol index in the partial Moon shadow during the solar eclipses on 26 December 2019 and 21 June 2020 measured by TROPOMI. This correction method resolves eclipse anomalies and allows for study of the effect of solar eclipses on the composition of the Earth's atmosphere from space.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1269, https://doi.org/10.5194/acp-2020-1269, 2021
Preprint withdrawn
Short summary
Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Juan Huo, Yufang Tian, Xue Wu, Congzheng Han, Bo Liu, Yongheng Bi, Shu Duan, and Daren Lyu
Atmos. Chem. Phys., 20, 14377–14392, https://doi.org/10.5194/acp-20-14377-2020, https://doi.org/10.5194/acp-20-14377-2020, 2020
Short summary
Short summary
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface Ka-band radar measurements in Beijing, where the summer oceanic monsoon from the ocean and winter continental monsoon prevail alternately. More than 6000 ice cloud clusters were studied to investigate their physical properties, such as height, horizontal extent, temperature dependence and origination type, which can serve as a reference for parameterization and characterization in global climate models.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Ping Wang, Ankie Piters, Jos van Geffen, Olaf Tuinder, Piet Stammes, and Stefan Kinne
Atmos. Meas. Tech., 13, 1413–1426, https://doi.org/10.5194/amt-13-1413-2020, https://doi.org/10.5194/amt-13-1413-2020, 2020
Short summary
Short summary
The comparison of shipborne MAX-DOAS and TROPOMI NO2 products is important for the evaluation of the TROPOMI products. The ship cruises were mainly over remote oceans, thus we only measured background tropospheric NO2. Stratospheric NO2 was measured more accurately because there was almost no contamination from tropospheric NO2. We found that the TROPOMI stratospheric NO2 vertical column densities were slightly higher than the MAX-DOAS measurements.
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Juan Huo, Daren Lu, Shu Duan, Yongheng Bi, and Bo Liu
Atmos. Meas. Tech., 13, 1–11, https://doi.org/10.5194/amt-13-1-2020, https://doi.org/10.5194/amt-13-1-2020, 2020
Short summary
Short summary
Cloud top height (CTH) is one of the important cloud parameters providing information about the vertical structure of cloud water content. To better understand the accuracy of CTH derived from passive satellite data, 2 years of ground-based Ka-band radar measurements are compared with CTH inferred from Terra/Aqua MODIS and Himawari AHI. It is found that MODIS and AHI underestimate CTH relative to radar by −1.10 km. Both MODIS and AHI CTH retrieval accuracy depend strongly on cloud depth.
Marine Desmons, Ping Wang, Piet Stammes, and L. Gijsbert Tilstra
Atmos. Meas. Tech., 12, 2485–2498, https://doi.org/10.5194/amt-12-2485-2019, https://doi.org/10.5194/amt-12-2485-2019, 2019
Short summary
Short summary
The FRESCO algorithm is a simple, fast and robust algorithm used to retrieve cloud information during operational satellite data processing. FRESCO retrieves effective cloud fraction and cloud pressure from measurements in the oxygen A band around 761 nm. In this paper, we propose a new version of the algorithm, called FRESCO-B, which is based on measurements in the oxygen B band around 687 nm. Such a method leads to more accurate retrievals for vegetated surfaces.
Bin Zhao, Jonathan H. Jiang, David J. Diner, Hui Su, Yu Gu, Kuo-Nan Liou, Zhe Jiang, Lei Huang, Yoshi Takano, Xuehua Fan, and Ali H. Omar
Atmos. Chem. Phys., 18, 11247–11260, https://doi.org/10.5194/acp-18-11247-2018, https://doi.org/10.5194/acp-18-11247-2018, 2018
Short summary
Short summary
We combine satellite-borne and ground-based observations to investigate the intra-annual variations of regional aerosol column loading, vertical distribution, and particle types. Column aerosol optical depth (AOD), as well as AOD > 800 m, peaks in summer/spring. However, AOD < 800 m and surface PM2.5 concentrations mostly peak in winter. The aerosol intra-annual variations differ significantly according to aerosol types characterized by different sizes, light absorption, and emission sources.
Tim Vlemmix, Xinrui (Jerry) Ge, Bryan T. G. de Goeij, Len F. van der Wal, Gerard C. J. Otter, Piet Stammes, Ping Wang, Alexis Merlaud, Dirk Schüttemeyer, Andreas C. Meier, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-257, https://doi.org/10.5194/amt-2017-257, 2017
Revised manuscript has not been submitted
Short summary
Short summary
We present a first analysis of UV/VIS spectral measurements obtained with the Spectrolite Breadboard Instrument (developed by TNO, The Netherlands) during the AROMAPEX campaign held in Berlin in April 2016 (campaign supported by ESA and EUFAR). This new sensor was used to measure air pollution in the form of tropospheric NO2 columns. The study focuses specifically on the retrieval of surface reflectances, an important intermediate step towards the final product.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Alba Lorente, K. Folkert Boersma, Huan Yu, Steffen Dörner, Andreas Hilboll, Andreas Richter, Mengyao Liu, Lok N. Lamsal, Michael Barkley, Isabelle De Smedt, Michel Van Roozendael, Yang Wang, Thomas Wagner, Steffen Beirle, Jin-Tai Lin, Nickolay Krotkov, Piet Stammes, Ping Wang, Henk J. Eskes, and Maarten Krol
Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, https://doi.org/10.5194/amt-10-759-2017, 2017
Short summary
Short summary
Choices and assumptions made to represent the state of the atmosphere introduce an uncertainty of 42 % in the air mass factor calculation in trace gas satellite retrievals in polluted regions. The AMF strongly depends on the choice of a priori trace gas profile, surface albedo data set and the correction method to account for clouds and aerosols. We call for well-designed validation exercises focusing on situations when AMF structural uncertainty has the highest impact on satellite retrievals.
P. Wang, M. Allaart, W. H. Knap, and P. Stammes
Atmos. Chem. Phys., 15, 4131–4144, https://doi.org/10.5194/acp-15-4131-2015, https://doi.org/10.5194/acp-15-4131-2015, 2015
Short summary
Short summary
A green light sensor has been developed at KNMI to measure actinic flux profiles together with an ozonesonde. The impact of clouds on the actinic flux is clearly detected. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost.
Q. Min, B. Yin, S. Li, J. Berndt, L. Harrison, E. Joseph, M. Duan, and P. Kiedron
Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014, https://doi.org/10.5194/amt-7-1711-2014, 2014
P. Wang and P. Stammes
Atmos. Meas. Tech., 7, 1331–1350, https://doi.org/10.5194/amt-7-1331-2014, https://doi.org/10.5194/amt-7-1331-2014, 2014
Y. F. Huo, M. Z. Duan, and W. S. Tian
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-2405-2014, https://doi.org/10.5194/amtd-7-2405-2014, 2014
Revised manuscript not accepted
A. du Piesanie, A. J. M. Piters, I. Aben, H. Schrijver, P. Wang, and S. Noël
Atmos. Meas. Tech., 6, 2925–2940, https://doi.org/10.5194/amt-6-2925-2013, https://doi.org/10.5194/amt-6-2925-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Troposphere–stratosphere-integrated bromine monoxide (BrO) profile retrieval over the central Pacific Ocean
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission
Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection
Assessment of the contribution of the Meteosat Third Generation Infrared Sounder (MTG-IRS) for the characterisation of ozone over Europe
Assessing the potential of free-tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events
Current potential of CH4 emission estimates using TROPOMI in the Middle East
A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Accounting for the effect of aerosols in GHGSat methane retrieval
Can remote sensing combustion phase improve estimates of landscape fire smoke emission rate and composition?
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
NitroNet – A deep-learning NO2 profile retrieval prototype for the TROPOMI satellite instrument
A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B
Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite
IMK–IAA MIPAS retrieval version 8: CH4 and N2O
Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates
Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera
The transition to new ozone absorption cross sections for Dobson and Brewer total ozone measurements
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations at Xianghe, China
Advantages of assimilating multispectral satellite retrievals of atmospheric composition: a demonstration using MOPITT carbon monoxide products
An improved OMI ozone profile research product version 2.0 with collection 4 L1b data and algorithm updates
Tropospheric ozone column dataset from OMPS-LP/OMPS-NM limb–nadir matching
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
The importance of digital elevation model accuracy in XCO2 retrievals: improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product
Level0 to Level1B processor for MethaneAIR
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
Improved CCD tropospheric ozone from S5P TROPOMI satellite data using local cloud fields
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
The GeoCarb greenhouse gas retrieval algorithm: simulations and sensitivity to sources of uncertainty
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
MIPAS ozone retrieval version 8: middle-atmosphere measurements
Atmospheric N2O and CH4 total columns retrieved from low-resolution Fourier transform infrared (FTIR) spectra (Bruker VERTEX 70) in the mid-infrared region
A new accurate retrieval algorithm of bromine monoxide columns inside minor volcanic plumes from Sentinel-5P TROPOMI observations
Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground
The IASI NH3 version 4 product: averaging kernels and improved consistency
A physically based correction for stray light in Brewer spectrophotometer data analysis
A research product for tropospheric NO2 columns from Geostationary Environment Monitoring Spectrometer based on Peking University OMI NO2 algorithm
Methane retrievals from airborne HySpex observations in the shortwave infrared
Feasibility analysis of optimal terahertz (THz) bands for passive limb sounding of middle and upper atmospheric wind
Retrieval of temperature and humidity profiles from ground-based high-resolution infrared observations using an adaptive fast iterative algorithm
A retrieval of xCO2 from ground-based mid-infrared NDACC solar absorption spectra and comparison to TCCON
Theodore K. Koenig, François Hendrick, Douglas Kinnison, Christopher F. Lee, Michel Van Roozendael, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5911–5934, https://doi.org/10.5194/amt-17-5911-2024, https://doi.org/10.5194/amt-17-5911-2024, 2024
Short summary
Short summary
Atmospheric bromine destroys ozone, impacts oxidation capacity, and oxidizes mercury into its toxic form. We constrain bromine by remote sensing of BrO from a mountaintop. Previous measurements retrieved two to three pieces of information vertically; we apply new methods to get five and a half vertically and two more in time. We compare with aircraft measurements to validate the methods and look at variations in BrO over the Pacific.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Chia-Pang Kuo and Christian Kummerow
Atmos. Meas. Tech., 17, 5637–5653, https://doi.org/10.5194/amt-17-5637-2024, https://doi.org/10.5194/amt-17-5637-2024, 2024
Short summary
Short summary
A small satellite about the size of a shoe box, named TEMPEST, carries only a microwave sensor and is designed to measure the water cycle of the Earth from space in an economical way compared with traditional satellites, which have additional infrared sensors. To overcome the limitation, extra infrared signals from GOES-R ABI are combined with TEMPEST microwave measurements. Compared with ground observations, improved humidity information is extracted from the merged TEMPEST and ABI signals.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Matthieu Dogniaux and Cyril Crevoisier
Atmos. Meas. Tech., 17, 5373–5396, https://doi.org/10.5194/amt-17-5373-2024, https://doi.org/10.5194/amt-17-5373-2024, 2024
Short summary
Short summary
Many CO2-observing satellite concepts, with very different design choices and trade-offs, are expected to be put into orbit during the upcoming decade. This work uses numerical simulations to explore the impact of critical design parameters on the performance of upcoming CO2-observing satellite concepts.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Matthias Schneider, Kinya Toride, Farahnaz Khosrawi, Frank Hase, Benjamin Ertl, Christopher J. Diekmann, and Kei Yoshimura
Atmos. Meas. Tech., 17, 5243–5259, https://doi.org/10.5194/amt-17-5243-2024, https://doi.org/10.5194/amt-17-5243-2024, 2024
Short summary
Short summary
Despite its importance for extreme weather and climate feedbacks, atmospheric convection is not well constrained. This study assesses the potential of novel tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events. We find that the impact of the isotopologues is small for stable atmospheric conditions but significant for unstable conditions, which have the strongest societal impacts (e.g. storms and flooding).
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, and Jhoon Kim
Atmos. Meas. Tech., 17, 5147–5159, https://doi.org/10.5194/amt-17-5147-2024, https://doi.org/10.5194/amt-17-5147-2024, 2024
Short summary
Short summary
We present an improved NO2 product from GEMS by calibrating it to TROPOMI using machine learning and by reprocessing both satellite products to adopt common NO2 profiles. Our corrected GEMS product combines the high data density of GEMS with the accuracy of TROPOMI, supporting the combined use for analyses of East Asia air quality including emissions and chemistry. This method can be extended to other species and geostationary satellites including TEMPO and Sentinel-4.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024, https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024, https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Short summary
We present a new method for estimating emissions and lifetimes for nitrogen oxides emitted from large cities by using satellite NO2 observations combined with wind fields. The estimate is based on the simultaneous evaluation of the downwind plumes for opposing wind directions. This allows us to derive seasonal mean emissions and lifetimes for 100 cities around the globe.
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Short summary
This study estimated the effects of aerosols on GHGSat satellite methane retrieval and investigated the performance of simultaneously retrieving aerosol and methane information using a multi-angle viewing method. Results suggested that the performance of GHGSat methane retrieval improved when aerosols were considered, and the multi-angle viewing method is insensitive to the satellite angle setting. This performance assessment is useful for improving future GHGSat-like instruments.
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-73, https://doi.org/10.5194/amt-2024-73, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Landscape fires produce vast amounts of smoke, affecting the atmosphere locally and globally. Whether a fire is flaming or smoldering strongly impacts the rate at which smoke is produced as well as its composition. This study tested two methods to determine these combustion phases in laboratory fires and compared them to the smoke emitted. One of these methods improved estimates of smoke emission significantly. This suggests potential for improvement in global emission estimates.
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Diego Loyola, Hanlim Lee, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1137, https://doi.org/10.5194/egusphere-2024-1137, 2024
Short summary
Short summary
In this study, we developed an advanced retrieval algorithm for tropospheric NO2 columns from geostationary satellite spectrometers, and applied it to GEMS measurements. The DLR GEMS NO2 retrieval algorithm follows the heritage from previous and existing algorithms, but improved approaches are applied to reflect the specific features of geostationary satellites. The DLR GEMS NO2 retrievals demonstrate a good capability in monitoring diurnal variability with a high spatial resolution.
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1196, https://doi.org/10.5194/egusphere-2024-1196, 2024
Short summary
Short summary
This paper presents a new machine-learning model, which allows to compute NO2 concentration profiles from satellite observations. The neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. It is the first model of this kind. We present a thorough model validation study, including different seasons and regions of the world.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Matthieu Dogniaux, Joannes D. Maasakkers, Daniel J. Varon, and Ilse Aben
Atmos. Meas. Tech., 17, 2777–2787, https://doi.org/10.5194/amt-17-2777-2024, https://doi.org/10.5194/amt-17-2777-2024, 2024
Short summary
Short summary
We analyze Landsat 8 (L8) and Sentinel-2B (S-2B) observations of the 2022 Nord Stream 2 methane leak and show how challenging this case is for usual data analysis methods. We provide customized calibrations for this Nord Stream 2 case and assess that no firm conclusion can be drawn from L8 or S-2B single overpasses. However, if we opportunistically assume that L8 and S-2B results are independent, we find an averaged L8 and S-2B combined methane leak rate of 502 ± 464 t h−1.
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas and a current high-priority target for short- to mid-term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing, outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high-spatial-resolution satellite data.
Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 2583–2593, https://doi.org/10.5194/amt-17-2583-2024, https://doi.org/10.5194/amt-17-2583-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas that has been responsible for around 25 % of global warming since the industrial revolution. Consequently identifying and mitigating methane emissions comprise an important step in combating the climate crisis. We develop a new deep learning model to automatically detect methane plumes from satellite images and demonstrate that this can be applied to monitor large methane emissions resulting from the oil and gas industry.
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024, https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
Short summary
FOCAL-CO2M is one of the three operational retrieval algorithms which will be used to derive XCO2 and XCH4 from measurements of the forthcoming European CO2M mission. We present results of applications of FOCAL-CO2M to simulated spectra, from which confidence is gained that the algorithm is able to fulfil the challenging requirements on systematic errors for the CO2M mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).
Marvin Knapp, Ralph Kleinschek, Sanam N. Vardag, Felix Külheim, Helge Haveresch, Moritz Sindram, Tim Siegel, Bruno Burger, and André Butz
Atmos. Meas. Tech., 17, 2257–2275, https://doi.org/10.5194/amt-17-2257-2024, https://doi.org/10.5194/amt-17-2257-2024, 2024
Short summary
Short summary
Imaging carbon dioxide (CO2) plumes of anthropogenic sources from planes and satellites has proven valuable for detecting emitters and monitoring climate mitigation efforts. We present the first images of CO2 plumes taken with a ground-based spectral camera, observing a coal-fired power plant as a validation target. We develop a technique to find the source emission strength with an hourly resolution, which reasonably agrees with the expected emissions under favorable conditions.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine DeMaziere
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-67, https://doi.org/10.5194/amt-2024-67, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Solar absorption spectra near 2967 cm−1 recorded by a ground-based FTIR with a high spectral resolution of 0.0035 cm-1 are applied to retrieve C3H8 columns for the first time at Xianghe, China, within the NDACC-IRWG. The mean and standard deviation of the C3H8 columns are 1.80±0.81(1σ) × 10 molecules / cm2. Good correlations are found between C3H8 and other non-methane hydrocarbons, such as C2H6 (R=0.84) and C2H2 (R=0.79), as well as between C3H8 and CO (R=0.72).
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Javier Roger, Luis Guanter, Javier Gorroño, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 1333–1346, https://doi.org/10.5194/amt-17-1333-2024, https://doi.org/10.5194/amt-17-1333-2024, 2024
Short summary
Short summary
Methane emissions can be identified using remote sensing, but surface-related structures disturb detection. In this work, a variation of the matched filter method that exploits a large fraction of the near-infrared range (1000–2500 nm) is applied. In comparison to the raw matched filter, it reduces background noise and strongly attenuates the surface-related artifacts, which leads to a greater detection capability. We propose this variation as a standard methodology for methane detection.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
EGUsphere, https://doi.org/10.5194/egusphere-2023-2825, https://doi.org/10.5194/egusphere-2023-2825, 2024
Short summary
Short summary
CHORA, an advanced CCD technique, enhances the accuracy of tropospheric ozone retrievals. Unlike the traditional Pacific cloud reference sector (CPC) scheme, CHORA introduces a local cloud reference sector (CLC ) and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods, emerging as the preferred choice, especially in future geostationary satellite missions.
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024, https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
Short summary
We developed a method to estimate CO2 emissions from localized sources, such as power plants, using satellite data and applied it to estimate CO2 emissions from the Bełchatów Power Station (Poland). As the detection of CO2 emission plumes from satellite data is difficult, we used observations of co-emitted NO2 to constrain the emission plume region. Our results agree with CO2 emission estimations based on the power-plant-generated power and emission factors.
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024, https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Short summary
Carbon dioxide and methane are greenhouse gases that have been rapidly increasing due to human activity since the industrial revolution, leading to global warming and subsequently negative affects on the climate. It is important to measure the concentrations of these gases in order to make climate predictions that drive policy changes to mitigate climate change. GeoCarb aims to measure the concentrations of these gases from space over the Americas at unprecedented spatial and temporal scales.
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality-filtered data. We propose a nonlinear method that improves correction against a set of ground truth proxies and allows for high throughput of well-corrected data.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, and Martine De Mazière
Atmos. Meas. Tech., 16, 5593–5608, https://doi.org/10.5194/amt-16-5593-2023, https://doi.org/10.5194/amt-16-5593-2023, 2023
Short summary
Short summary
Atmospheric N2O and CH4 columns are successfully retrieved from low-resolution FTIR spectra recorded by a Bruker VERTEX 70. The 1-year measurements at Sodankylä show that the N2O total columns retrieved from 125HR and VERTEX 70 spectra are −0.3 ± 0.7 % with an R value of 0.93. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX spectra are 0.0 ± 0.8 % with an R value of 0.87. Such a technique can help to fill the gap in NDACC N2O and CH4 measurements.
Simon Warnach, Holger Sihler, Christian Borger, Nicole Bobrowski, Steffen Beirle, Ulrich Platt, and Thomas Wagner
Atmos. Meas. Tech., 16, 5537–5573, https://doi.org/10.5194/amt-16-5537-2023, https://doi.org/10.5194/amt-16-5537-2023, 2023
Short summary
Short summary
BrO inside volcanic gas plumes but can be used in combination with SO2 to characterize the volcanic property and its activity state. High-quality satellite observations can provide a global inventory of this important quantity. This paper investigates how to accurately detect BrO inside volcanic plumes from the satellite UV spectrum. A sophisticated novel non-volcanic background correction scheme is presented, and systematic errors including cross-interference with formaldehyde are minimized.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Lieven Clarisse, Bruno Franco, Martin Van Damme, Tommaso Di Gioacchino, Juliette Hadji-Lazaro, Simon Whitburn, Lara Noppen, Daniel Hurtmans, Cathy Clerbaux, and Pierre Coheur
Atmos. Meas. Tech., 16, 5009–5028, https://doi.org/10.5194/amt-16-5009-2023, https://doi.org/10.5194/amt-16-5009-2023, 2023
Short summary
Short summary
Ammonia is an important atmospheric pollutant. This article presents version 4 of the algorithm which retrieves ammonia abundances from the infrared measurements of the satellite sounder IASI. A measurement operator is introduced that can emulate the measurements (so-called averaging kernels) and measurement uncertainty is better characterized. Several other changes to the product itself are also documented, most of which improve the temporal consistency of the 2007–2022 IASI NH3 dataset.
Vladimir Savastiouk, Henri Diémoz, and C. Thomas McElroy
Atmos. Meas. Tech., 16, 4785–4806, https://doi.org/10.5194/amt-16-4785-2023, https://doi.org/10.5194/amt-16-4785-2023, 2023
Short summary
Short summary
This paper describes a way to significantly improve ozone measurements at low sun elevations and large ozone amounts when using the Brewer ozone spectrophotometer. The proposed algorithm will allow more uniform ozone measurements across the monitoring network. This will contribute to more reliable trend analysis and support the satellite validation. This research contributes to better understanding the physics of the instrument, and the new algorithm is based on this new knowledge.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Philipp Hochstaffl, Franz Schreier, Claas Henning Köhler, Andreas Baumgartner, and Daniele Cerra
Atmos. Meas. Tech., 16, 4195–4214, https://doi.org/10.5194/amt-16-4195-2023, https://doi.org/10.5194/amt-16-4195-2023, 2023
Short summary
Short summary
The study examines methane enhancements inferred from hyperspectral imaging observations using different retrieval schemes. One of the core challenges is the high spatial and moderate spectral resolution as it makes separation of spectral variations caused by molecular absorption and surface reflectivity challenging. It was found that localized methane enhancements can be detected and quantified from HySpex airborne observations using various retrieval schemes.
Wenyu Wang, Jian Xu, and Zhenzhan Wang
Atmos. Meas. Tech., 16, 4137–4153, https://doi.org/10.5194/amt-16-4137-2023, https://doi.org/10.5194/amt-16-4137-2023, 2023
Short summary
Short summary
This article presents a study for feasibility analysis of atmospheric wind measurement using a terahertz (THz) passive limb radiometer with high spectral resolution. The simulations show that line-of-sight wind from 40 to 120 km can be obtained better than 10 m s−1 (at most altitudes it is better than 5 m s−1) using the O3, O2, H2O, and OI bands. This study will provide reference for future payload design.
Wei Huang, Lei Liu, Bin Yang, Shuai Hu, Wanying Yang, Zhenfeng Li, Wantong Li, and Xiaofan Yang
Atmos. Meas. Tech., 16, 4101–4114, https://doi.org/10.5194/amt-16-4101-2023, https://doi.org/10.5194/amt-16-4101-2023, 2023
Short summary
Short summary
To improve the retrieval speed of the AERI optimal estimation (AERIoe) method, a fast-retrieval algorithm named Fast AERIoe is proposed on the basis of the findings that the change in Jacobians during the retrieval process had little effect on the performance of AERIoe. The results of the experiment show that the retrieved profiles from Fast AERIoe are comparable to those of AERIoe and that the retrieval speed is significantly improved, with the average retrieval time reduced by 59 %.
Rafaella Chiarella, Matthias Buschmann, Joshua Laughner, Isamu Morino, Justus Notholt, Christof Petri, Geoffrey Toon, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 16, 3987–4007, https://doi.org/10.5194/amt-16-3987-2023, https://doi.org/10.5194/amt-16-3987-2023, 2023
Short summary
Short summary
The goal is to establish a window and strategy for xCO2 retrieval from ground-based Fourier transform spectrometers for NDACC. In the study we describe the spectroscopy of the region, the locations and instruments used, and the methods of calculating the retrieved xCO2. We performed tests to assess the sensitivity to diverse factors and sources of errors while comparing the retrieval to a well-established xCO2 retrieval from TCCON.
Cited articles
Augustine, J. A., Hodges, G. B., Dutton, E. G., Michalsky, J. J., and
Cornwall, C. R.: An aerosol optical depth climatology for NOAA's national
surface radiation budget network (SURFRAD), J. Geophys. Res., 113, D11204,
https://doi.org/10.1029/2007jd009504, 2008.
Barreto, A., Cuevas, E., Pallé, P., Romero, P. M., Guirado, C., Wehrli, C. J., and Almansa, F.: Recovering long-term aerosol optical depth series (1976–2012) from an astronomical potassium-based resonance scattering spectrometer, Atmos. Meas. Tech., 7, 4103–4116, https://doi.org/10.5194/amt-7-4103-2014, 2014.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and
Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor
using the global positioning system, J. Geophys. Res.-Atmos., 97,
15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R.,
Reinhardt, B., Renné, D., Sengupta, M., Wald, L., and Wilbert, S.:
Direct normal irradiance related definitions and applications: The
circumsolar issue, Sol. Energy, 110, 561–577, https://doi.org/10.1016/j.solener.2014.10.001, 2014.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
Optical Depth Calculations, J. Atmos. Ocean. Technol., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:Orodc>2.0.Co;2, 1999.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, B. Am. Meteorol. Soc., 95, 1431–1443,
https://doi.org/10.1175/bams-d-13-00047.1, 2014.
Cachorro, V. E., Berjon, A., Toledano, C., Mogo, S., Prats, N., Frutos, M.
D., Vilaplana, J. M., Sorribas, M., Morena, B. A. D. L., and Groebner, J.:
Detailed Aerosol Optical Depth Intercomparison between Brewer and Li-Cor
1800 Spectroradiometers and a Cimel Sun Photometer, J. Atmos. Ocean.
Tech., 26, 1558–1571, https://doi.org/10.1175/2009JTECHA1217.1, 2009.
Campanelli, M., Estelles, V., Smyth, T., Tomasi, C., and Nakajima, T.:
Monitoring of Eyjafjallajoekull volcanic aerosol by the new European SkyRad
users (ESR) sun-sky radiometer network, Atmos. Environ., 48, 33–45,
https://doi.org/10.1016/j.atmosenv.2011.09.070, 2012.
Campanelli, M., Nakajima, T., Khatri, P., Takamura, T., Uchiyama, A., Estelles, V., Liberti, G. L., and Malvestuto, V.: Retrieval of characteristic parameters for water vapour transmittance in the development of ground-based sun–sky radiometric measurements of columnar water vapour, Atmos. Meas. Tech., 7, 1075–1087, https://doi.org/10.5194/amt-7-1075-2014, 2014.
Che, H., Gui, K., Chen, Q., Zheng, Y., Yu, J., Sun, T., Zhang, X., and Shi,
G.: Calibration of the 936 nm water-vapor channel for the China aerosol
remote sensing NETwork (CARSNET) and the effect of the retrieval water-vapor
on aerosol optical property over Beijing, China, Atmos. Pollut. Res., 7,
743–753, https://doi.org/10.1016/j.apr.2016.04.003, 2016.
Cuevas Agulló, E., Milford, C., and Tarasova, O.: Izaña Atmospheric
Research Center, Activity Report 2012–2014, https://doi.org/10.31978/281-15-004-2, 2015.
Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bojkov,
B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P., Gu, X., Hasekamp,
O., Hong, J., Hou, W., Knobelspiesse, K. D., Landgraf, J., Li, L., Litvinov,
P., Liu, Y., Lopatin, A., Marbach, T., Maring, H., Martins, V., Meijer, Y.,
Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L., Rietjens, J.,
Sano, I., Stammes, P., Stamnes, S., Sun, X., Tabary, P., Travis, L. D.,
Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote sensing of
atmospheric aerosols: Instruments, methodologies, results, and perspectives,
J. Quant. Spectrosc. Radiat. Transfer., 224, 474–511, https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.
Estellés, V., Utrillas, M. P., Martínez-Lozano, J. A.,
Alcántara, A., Alados-Arboledas, L., Olmo, F. J., Lorente, J., de Cabo,
X., Cachorro, V., Horvath, H., Labajo, A., Sorribas, M., Díaz, J. P.,
Díaz, A. M., Silva, A. M., Elías, T., Pujadas, M., Rodrigues, J.
A., Cañada, J., and García, Y.: Intercomparison of
spectroradiometers and Sun photometers for the determination of the aerosol
optical depth during the VELETA-2002 field campaign, J. Geophys. Res., 111, D17207,
https://doi.org/10.1029/2005jd006047, 2006.
García, R. D., Cuevas, E., Cachorro, V. E., García, O. E.,
Barreto, Á., Almansa, A. F., Romero-Campos, P. M., Ramos, R., Pó,
M., Hoogendijk, K., and Gross, J.: Water Vapor Retrievals from Spectral
Direct Irradiance Measured with an EKO MS-711
Spectroradiometer – Intercomparison with Other Techniques, Remote Sens., 13,
350, https://doi.org/10.3390/rs13030350, 2021.
García-Cabrera, R. D., Cuevas-Agulló, E., Barreto, Á., Cachorro, V. E., Pó, M., Ramos, R., and Hoogendijk, K.: Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation, Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, 2020.
Gueymard, C. A.: Parameterized transmittance model for direct beam and
circumsolar spectral irradiance, Sol. Energy, 71, 325–346, https://doi.org/10.1016/S0038-092X(01)00054-8, 2001.
Güldner, J.: A model-based approach to adjust microwave observations for operational applications: results of a campaign at Munich Airport in winter 2011/2012, Atmos. Meas. Tech., 6, 2879–2891, https://doi.org/10.5194/amt-6-2879-2013, 2013.
Güldner, J. and Spänkuch, D.: Remote Sensing of the Thermodynamic
State of the Atmospheric Boundary Layer by Ground-Based Microwave
Radiometry, J. Atmos. Ocean. Tech., 18, 925–933, https://doi.org/10.1175/1520-0426(2001)018<0925:Rsotts>2.0.Co;2, 2001.
Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres,
Space Sci. Rev., 16, 527–610, https://doi.org/10.1007/BF00168069, 1974.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., and Nakajima, T.:
AERONET – A Federated Instrument Network and Data Archive for Aerosol
Characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Ingold, T., Schmid, B., Mätzler, C., Demoulin, P., and Kämpfer, N.:
Modeled and empirical approaches for retrieving columnar water vapor from
solar transmittance measurements in the 0.72, 0.82, and 0.94 µm
absorption bands, J. Geophys. Res.-Atmos., 105, 24327–24343, https://doi.org/10.1029/2000jd900392, 2000.
IPCC: The Physical Science Basis, Intergovernmental Panel on Climate Change, Cambridge University Press, 119–158 pp.,
https://doi.org/10.1017/CBO9781107415324, 2013.
IPCC: Climate Change 2021: The Physical Science Basis, Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, https://www.ipcc.ch/report/ar6/wg1/about/how-to-cite-this-report/ (last access: 11 October 2021), Cambridge University Press, 147–286 pp.,
2021.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols
in the climate system, Nature, 419, 215–223, https://doi.org/10.1038/nature01091, 2002.
Kazadzis, S., Veselovskii, I., Amiridis, V., Gröbner, J., Suvorina, A., Nyeki, S., Gerasopoulos, E., Kouremeti, N., Taylor, M., Tsekeri, A., and Wehrli, C.: Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET, Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, 2014.
Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, 2018a.
Kazadzis, S., Kouremeti, N., Nyeki, S., Gröbner, J., and Wehrli, C.: The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements, Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, 2018b.
Kokhanovsky, A. A.: Remote sensing of atmospheric aerosol using spaceborne
optical observations, Earth Sci. Rev., 116, 95–108, https://doi.org/10.1016/j.earscirev.2012.10.008, 2013.
Kurucz, R. L.: Synthetic Infrared Spectra, Iua. Symp., 154, 523–531,
https://doi.org/10.1007/978-94-011-1926-9_62,
1994.
Larar, A. M., Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K.,
Dothe, H., Matthew, M. W., Adler-Golden, S. M., Chetwynd, J. J. H.,
Richtsmeier, S. C., Pukall, B., Allred, C. L., Jeong, L. S., and Hoke, M.
L.: MODTRAN4 radiative transfer modeling for atmospheric correction,
P. Soc. Photo.-Opt. Ins., 3756, 348–353, https://doi.org/10.1117/12.366388, 1999.
Li, C., Li, J., Xu, H., Li, Z., Xia, X., and Che, H.: Evaluating VIIRS EPS
Aerosol Optical Depth in China: An intercomparison against ground-based
measurements and MODIS, J. Quant. Spectrosc. Radiat. Transfer., 224, 368–377,
https://doi.org/10.1016/j.jqsrt.2018.12.002, 2019.
Li, Z. Q., Xu, H., Li, K. T., Li, D. H., Xie, Y. S., Li, L., Zhang, Y., Gu,
X. F., Zhao, W., Tian, Q. J., Deng, R. R., Su, X. L., Huang, B., Qiao, Y.
L., Cui, W. Y., Hu, Y., Gong, C. L., Wang, Y. Q., Wang, X. F., Wang, J. P.,
Du, W. B., Pan, Z. Q., Li, Z. Z., and Bu, D.: Comprehensive Study of
Optical, Physical, Chemical, and Radiative Properties of Total Columnar
Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer
Observation Network (SONET) Measurements, B. Am. Meteorol. Soc., 99,
739–755, https://doi.org/10.1175/bams-d-17-0133.1, 2018.
Michalsky, J. J., Schlemmer, J. A., Berkheiser, W. E., Berndt, J. L.,
Harrison, L. C., Laulainen, N. S., Larson, N. R., and Barnard, J. C.:
Multiyear measurements of aerosol optical depth in the Atmospheric Radiation
Measurement and Quantitative Links programs, J. Geophys. Res.-Atmos., 106,
12099–12107, https://doi.org/10.1029/2001jd900096, 2001.
NASA: AERONET: AErosol RObotic NETwork, NASA [data set], https://aeronet.gsfc.nasa.gov (last access: 1 April 2022), 2023.
NOAA: NOAA, U.S. standard atmosphere 1976, 21–47 pp., NOAA-S/T 76-1526, 1976.
Ramachandran, S., Jayaraman, A., Acharya, Y., and Subbaraya, B.: Features of
aerosol optical depths over Ahmedabad as observed with a Sun-tracking
photometer, Beitr. Phys. Atmosph., 67, 57–70, 1994.
Raptis, P.-I., Kazadzis, S., Gröbner, J., Kouremeti, N., Doppler, L., Becker, R., and Helmis, C.: Water vapour retrieval using the Precision Solar Spectroradiometer, Atmos. Meas. Tech., 11, 1143–1157, https://doi.org/10.5194/amt-11-1143-2018, 2018.
Schmid, B., Michalsky, J., Halthore, R., Beauharnois, M., Harrison, L.,
Livingston, J., Russell, P., Holben, B., Eck, T., and Smirnov, A.:
Comparison of aerosol optical depth from four solar radiometers during the
fall 1997 ARM intensive observation period, Geophys. Res. Lett., 26,
2725–2728, https://doi.org/10.1029/1999gl900513, 1999.
Sinyuk, A., Holben, B. N., Smirnov, A., Eck, T. F., Slutsker, I., Schafer,
J. S., Giles, D. M., and Sorokin, M.: Assessment of error in aerosol optical
depth measured by AERONET due to aerosol forward scattering, Geophys. Res.
Lett., 39, L28306, https://doi.org/10.1029/2012gl053894, 2012.
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.:
Cloud-Screening and Quality Control Algorithms for the AERONET Database,
Remote Sens. Environ., 73, 337–349, https://doi.org/10.1016/s0034-4257(00)00109-7, 2000.
Smirnov, A., Holben, B., Lyapustin, A., Slutsker, I., and Eck, T.: AERONET
processing algorithms refinement, AERONET Workshop, El Arenosillo, Spain,
10–14, 291795812, 2004.
Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988.
Swinehart, F. D.: The Beer-Lambert Law, J. Chem. Educ., 39, 333, https://doi.org/10.1021/ed039p333, 1962.
Wang, J., Zhang, L., Dai, A., Van Hove, T., and Van Baelen, J.: A
near-global, 2-hourly data set of atmospheric precipitable water from
ground-based GPS measurements, J. Geophys. Res., 112, D11107, https://doi.org/10.1029/2006jd007529, 2007.
Wehrli, C.: Calibrations of filter radiometers for determination of
atmospheric optical depth, Metrologia, 37, 419, https://doi.org/10.1088/0026-1394/37/5/16, 2003.
WMO: WMO/GAW Experts Workshop on a Global Surface-Based Network for Long
Term Observations of Column Aerosol Optical Properties, GAW Report No. 162,
WMO TD No. 1287, available at: https://library.wmo.int/doc_num.php?explnum_id=9299 (last access: 6 May 2022), 2005.
WMO: GAW Report-No 231, Fourth WMO Filter Radiometer Comparison (FRC-IV),
Davos, Switzerland, 28 September–16 October 2015, WMO, available at:
https://library.wmo.int/doc_num.php?explnum_id=3369 (last access: 6 May
2022), 2016.
Short summary
We established a spectral-fitting method to derive precipitable water vapor (PWV) and aerosol optical depth based on a strict radiative transfer theory by the spectral measurements of direct sun from EKO MS711 and MS712 spectroradiometers. The retrievals were compared with that of the colocated CE-318 photometer; the results showed a high degree of consistency. In the PWV inversion, a strong water vapor absorption band around 1370 nm is introduced to retrieve PWV in a relatively dry atmosphere.
We established a spectral-fitting method to derive precipitable water vapor (PWV) and aerosol...