Articles | Volume 17, issue 5
https://doi.org/10.5194/amt-17-1577-2024
https://doi.org/10.5194/amt-17-1577-2024
Research article
 | 
15 Mar 2024
Research article |  | 15 Mar 2024

Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data

Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind

Related authors

Advantages of G-band radar in multi-frequency, liquid phase microphysical retrievals
Benjamin Michael Courtier, Alessandro Battaglia, and Kamil Mroz
EGUsphere, https://doi.org/10.5194/egusphere-2024-205,https://doi.org/10.5194/egusphere-2024-205, 2024
Short summary
In-orbit cross-calibration of millimeter conically scanning spaceborne radars
Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth
Atmos. Meas. Tech., 16, 3283–3297, https://doi.org/10.5194/amt-16-3283-2023,https://doi.org/10.5194/amt-16-3283-2023, 2023
Short summary
Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023,https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Triple-frequency radar retrieval of microphysical properties of snow
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021,https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024,https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024,https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary

Cited articles

Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015. a
Awaka, J., Le, M., Brodzik, S., Kubota, T., Masaki, T., Chandrasekar, V., and Iguchi, T.: Development of Precipitation Type Classification Algorithms for a Full Scan Mode of GPM Dual-frequency Precipitation Radar, J. Meteorol. Soc. Jpn. Ser. II, 99, 1253–1270, https://doi.org/10.2151/jmsj.2021-061, 2021. a
Barnes, H. C. and Houze Jr., R. A.: Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems, J. Geophys. Res., 121, 8269–8296, 2016. a
Battaglia, A., Tanelli, S., Kobayashi, S., Zrnic, D., Hogan, R. J., and Simmer, C.: Multiple-scattering in radar systems: A review, J. Quant. Spectrosc. Ra., 111, 917–947, https://doi.org/10.1016/j.jqsrt.2009.11.024, 2010. a
Battaglia, A., Tanelli, S., Heymsfield, G. M., and Tian, L.: The Dual Wavelength Ratio Knee: A Signature of Multiple Scattering in Airborne Ku–Ka Observations, J. Appl. Meteorol. Clim., 53, 1790–1808, https://doi.org/10.1175/JAMC-D-13-0341.1, 2014. a
Download
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.