Articles | Volume 17, issue 8
https://doi.org/10.5194/amt-17-2539-2024
https://doi.org/10.5194/amt-17-2539-2024
Research article
 | 
02 May 2024
Research article |  | 02 May 2024

Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground

Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann

Related authors

Double moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-2,https://doi.org/10.5194/amt-2024-2, 2024
Revised manuscript accepted for AMT
Short summary
On the polarimetric backscatter by a still or quasi-still wind turbine
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023,https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Insights into wind turbine reflectivity and radar cross-section (RCS) and their variability using X-band weather radar observations
Martin Lainer, Jordi Figueras i Ventura, Zaira Schauwecker, Marco Gabella, Montserrat F.-Bolaños, Reto Pauli, and Jacopo Grazioli
Atmos. Meas. Tech., 14, 3541–3560, https://doi.org/10.5194/amt-14-3541-2021,https://doi.org/10.5194/amt-14-3541-2021, 2021
Short summary
Significant decline of mesospheric water vapor at the NDACC site near Bern in the period 2007 to 2018
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019,https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Long-term observation of midlatitude quasi 2-day waves by a water vapor radiometer
Martin Lainer, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018,https://doi.org/10.5194/acp-18-12061-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024,https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee​​​​​​​ Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024,https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary

Cited articles

Allen, J. T., Giammanco, I. M., Kumjian, M. R., Jurgen Punge, H., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding Hail in the Earth System, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020. a
Barras, H., Hering, A., Martynov, A., Noti, P.-A., Germann, U., and Martius, O.: Experiences with > 50,000 Crowdsourced Hail Reports in Switzerland, B. Am. Meteorol. Soc., 100, 1429–1440, https://doi.org/10.1175/BAMS-D-18-0090.1, 2019. a, b
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 69, 163–178, https://doi.org/10.1016/j.jsg.2014.10.007, 2014. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2236121, https://www.drdobbs.com/open-source/the-opencv-library/184404319 (last access: 26 April 2024), 2000.​​​​​​​​​​​​​​ a, b
Brook, J. P., Protat, A., Soderholm, J., Carlin, J. T., McGowan, H., and Warren, R. A.: HailTrack – Improving Radar-Based Hailfall Estimates by Modeling Hail Trajectories, J. Appl. Meteorol. Clim., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-0087.1, 2021. a
Download
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.