Articles | Volume 17, issue 2
https://doi.org/10.5194/amt-17-407-2024
https://doi.org/10.5194/amt-17-407-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Radar and environment-based hail damage estimates using machine learning

Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder

Related authors

Contributions of the synoptic meteorology to the seasonal CCN cycle over the Southern Ocean
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397,https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024,https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Allen, J. T. and Tippett, M. K.: The Characteristics of United States Hail Reports: 1955–2014, E-Journal of Severe Storms Meteorology, 10, 1–31, https://doi.org/10.55599/EJSSM.V10I3.60, 2015. a
Blong, R.: Residential building damage and natural perils: Australian examples and issues, Build. Res. Inf., 32, 379–390, https://doi.org/10.1080/0961321042000221007, 2007. a
Brook, J. P., Protat, A., Soderholm, J., Carlin, J. T., McGowan, H., and Warren, R. A.: HailTrack–Improving Radar-Based Hailfall Estimates by Modeling Hail Trajectories, J. Appl. Meteorol. Clim., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-0087.1, 2021. a, b, c, d
Brook, J. P., Protat, A., Soderholm, J. S., Warren, R. A., and McGowan, H.: A Variational Interpolation Method for Gridding Weather Radar Data, J. Atmos. Ocean. Tech., 39, 1633–1654, https://doi.org/10.1175/JTECH-D-22-0015.1, 2022. a, b
Download
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.