Articles | Volume 6, issue 10
https://doi.org/10.5194/amt-6-2549-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-6-2549-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008
J. P. Parrella
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
K. Chance
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
R. J. Salawitch
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
T. Canty
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
M. Dorf
Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
K. Pfeilsticker
Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany
Related authors
No articles found.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Santo Fedele Colosimo, Nathaniel Brockway, Vijay Natraj, Robert Spurr, Klaus Pfeilsticker, Lisa Scalone, Max Spolaor, Sarah Woods, and Jochen Stutz
Atmos. Meas. Tech., 17, 2367–2385, https://doi.org/10.5194/amt-17-2367-2024, https://doi.org/10.5194/amt-17-2367-2024, 2024
Short summary
Short summary
Cirrus clouds are poorly understood components of the climate system, in part due to the challenge of observing thin, sub-visible ice clouds. We address this issue with a new observational approach that uses the remote sensing of near-infrared ice water absorption features from a high-altitude aircraft. We describe the underlying principle of this approach and present a new procedure to retrieve ice concentration in cirrus clouds. Our retrievals compare well with in situ observations.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Apisada Chulakadabba, Maryann Sargent, Thomas Lauvaux, Joshua S. Benmergui, Jonathan E. Franklin, Christopher Chan Miller, Jonas S. Wilzewski, Sébastien Roche, Eamon Conway, Amir H. Souri, Kang Sun, Bingkun Luo, Jacob Hawthrone, Jenna Samra, Bruce C. Daube, Xiong Liu, Kelly Chance, Yang Li, Ritesh Gautam, Mark Omara, Jeff S. Rutherford, Evan D. Sherwin, Adam Brandt, and Steven C. Wofsy
Atmos. Meas. Tech., 16, 5771–5785, https://doi.org/10.5194/amt-16-5771-2023, https://doi.org/10.5194/amt-16-5771-2023, 2023
Short summary
Short summary
We show that MethaneAIR, a precursor to the MethaneSAT satellite, demonstrates accurate point source quantification during controlled release experiments and regional observations in 2021 and 2022. Results from our two independent quantification methods suggest the accuracy of our sensor and algorithms is better than 25 % for sources emitting 200 kg h−1 or more. Insights from these measurements help establish the capabilities of MethaneSAT and MethaneAIR.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, John Philip Burrows, Birger Bohn, Eric Förster, Florian Obersteiner, Andreas Zahn, Theresa Harlaß, Helmut Ziereis, Hans Schlager, Benjamin Schreiner, Flora Kluge, Katja Bigge, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 7799–7822, https://doi.org/10.5194/acp-23-7799-2023, https://doi.org/10.5194/acp-23-7799-2023, 2023
Short summary
Short summary
The applicability of photostationary steady-state (PSS) assumptions to estimate the amount of the sum of peroxy radicals (RO2*) during the EMeRGe airborne observations from the known radical chemistry and onboard measurements of RO2* precursors, photolysis frequencies, and other trace gases such as NOx and O3 was investigated. The comparison of the calculated RO2* with the actual measurements provides an insight into the main processes controlling their concentration in the air masses measured.
Huiqun Wang, Gonzalo González Abad, Chris Chan Miller, Hyeong-Ahn Kwon, Caroline R. Nowlan, Zolal Ayazpour, Heesung Chong, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Kang Sun, Robert Spurr, and Robert J. Hargreaves
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-66, https://doi.org/10.5194/amt-2023-66, 2023
Preprint withdrawn
Short summary
Short summary
A pipeline for retrieving Total Column Water Vapor from satellite blue spectra is developed. New constraints are considered. Water-leaving radiance is important over the oceans. Results agree with reference datasets well under clear conditions. Due to high sensitivity to clouds, strict data filtering criteria are required. All-sky retrievals can be corrected using machine learning. GPS stations’ representation errors follow a power law relationship with grid resolutions.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Flora Kluge, Tilman Hüneke, Christophe Lerot, Simon Rosanka, Meike K. Rotermund, Domenico Taraborrelli, Benjamin Weyland, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 1369–1401, https://doi.org/10.5194/acp-23-1369-2023, https://doi.org/10.5194/acp-23-1369-2023, 2023
Short summary
Short summary
Using airborne glyoxal concentration and vertical column density measurements, vertical profiles are inferred for eight global regions in aged biomass burning plumes and the tropical marine boundary layer. Using TROPOMI observations, an analysis of space- and airborne measurements is performed. A comparison to EMAC simulations shows a general glyoxal underprediction, which points to various missing sources and precursors from anthropogenic activities, biomass burning, and the sea surface.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022, https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022, https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
Short summary
The central component of satellite and model validation is pointwise measurements. A point is an element of space, whereas satellite (model) pixels represent an averaged area. These two datasets are inherently different. We leveraged some geostatistical tools to transform discrete points to gridded data with quantified uncertainty, comparable to satellite footprint (and response functions). This in part alleviated some complications concerning point–pixel comparisons.
Amir H. Souri, Kelly Chance, Juseon Bak, Caroline R. Nowlan, Gonzalo González Abad, Yeonjin Jung, David C. Wong, Jingqiu Mao, and Xiong Liu
Atmos. Chem. Phys., 21, 18227–18245, https://doi.org/10.5194/acp-21-18227-2021, https://doi.org/10.5194/acp-21-18227-2021, 2021
Short summary
Short summary
The global pandemic is believed to have an impact on emissions of air pollutants such as nitrogen dioxide (NO2) and formaldehyde (HCHO). This study quantifies the changes in the amount of NOx and VOC emissions via state-of-the-art inverse modeling technique using satellite observations during the lockdown 2020 with respect to a baseline over Europe, which in turn, it permits unraveling atmospheric processes being responsible for ozone formation in a less cloudy month.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Clara M. Nussbaumer, Uwe Parchatka, Ivan Tadic, Birger Bohn, Daniel Marno, Monica Martinez, Roland Rohloff, Hartwig Harder, Flora Kluge, Klaus Pfeilsticker, Florian Obersteiner, Martin Zöger, Raphael Doerich, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 14, 6759–6776, https://doi.org/10.5194/amt-14-6759-2021, https://doi.org/10.5194/amt-14-6759-2021, 2021
Short summary
Short summary
NO2 plays a central role in atmospheric photochemical processes and requires accurate measurements. This research presents NO2 data obtained via chemiluminescence using a photolytic converter from airborne studies around Cabo Verde and laboratory investigations. We show the limits and error-proneness of a conventional blue light converter in aircraft measurements affected by humidity and NO levels and suggest the use of an alternative quartz converter for more reliable results.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021, https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Short summary
Given the high global warming potential of CH4, the identification and subsequent reduction of anthropogenic CH4 emissions presents a significant opportunity for climate change mitigation. Satellites are an integral piece of this puzzle, providing data to quantify emissions at a variety of spatial scales. This work presents the spectral calibration of MethaneAIR, the airborne instrument used as a test bed for the forthcoming MethaneSAT satellite.
Juseon Bak, Xiong Liu, Robert Spurr, Kai Yang, Caroline R. Nowlan, Christopher Chan Miller, Gonzalo Gonzalez Abad, and Kelly Chance
Atmos. Meas. Tech., 14, 2659–2672, https://doi.org/10.5194/amt-14-2659-2021, https://doi.org/10.5194/amt-14-2659-2021, 2021
Short summary
Short summary
We apply a principal component analysis (PCA)-based approach combined with lookup tables (LUTs) of corrections to accelerate the VLIDORT radiative transfer (RT) model used in the retrieval of ozone profiles from backscattered ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI).
Juseon Bak, Xiong Liu, Manfred Birk, Georg Wagner, Iouli E. Gordon, and Kelly Chance
Atmos. Meas. Tech., 13, 5845–5854, https://doi.org/10.5194/amt-13-5845-2020, https://doi.org/10.5194/amt-13-5845-2020, 2020
Short summary
Short summary
This paper evaluates different sets of high-resolution ozone absorption cross-section data for use in atmospheric ozone profile measurements in the Hartley and Huggins bands with a particular focus on BDM 1995 (Daumont et al. 1992; Brion et al., 1993; Malicet et al., 1995) currently used in our retrievals and a new laboratory dataset by Birk and Wagner (BW) (2018).
Lei Zhu, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Kelly Chance, Eric C. Apel, Joshua P. DiGangi, Alan Fried, Thomas F. Hanisco, Rebecca S. Hornbrook, Lu Hu, Jennifer Kaiser, Frank N. Keutsch, Wade Permar, Jason M. St. Clair, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 12329–12345, https://doi.org/10.5194/acp-20-12329-2020, https://doi.org/10.5194/acp-20-12329-2020, 2020
Short summary
Short summary
We develop a validation platform for satellite HCHO retrievals using in situ observations from 12 aircraft campaigns. The platform offers an alternative way to quickly assess systematic biases in HCHO satellite products over large domains and long periods, facilitating optimization of retrieval settings and the minimization of retrieval biases. Application to the NASA operational HCHO product indicates that relative biases range from −44.5 % to +112.1 % depending on locations and seasons.
Flora Kluge, Tilman Hüneke, Matthias Knecht, Michael Lichtenstern, Meike Rotermund, Hans Schlager, Benjamin Schreiner, and Klaus Pfeilsticker
Atmos. Chem. Phys., 20, 12363–12389, https://doi.org/10.5194/acp-20-12363-2020, https://doi.org/10.5194/acp-20-12363-2020, 2020
Short summary
Short summary
The presented study reports on airborne measurements of formaldehyde, glyoxal, methylglyoxal, and CO over the Amazon basin and lays a special focus on the influence of biomass burning emissions on the atmospheric profiles of these carbonyl compounds within the planetary boundary layer as well as in the free and upper troposphere.
Eamon K. Conway, Iouli E. Gordon, Jonathan Tennyson, Oleg L. Polyansky, Sergei N. Yurchenko, and Kelly Chance
Atmos. Chem. Phys., 20, 10015–10027, https://doi.org/10.5194/acp-20-10015-2020, https://doi.org/10.5194/acp-20-10015-2020, 2020
Short summary
Short summary
Water vapour has a complex spectrum and absorbs from the microwave to the near-UV where it dissociates. There is limited knowledge of the absorption features in the near-UV, and there is a large disagreement for the available models and experiments. We created a new ab initio model that is in good agreement with observation at 363 nm. At lower wavelengths, our calculations suggest that the latest experiments overestimate absorption. This has implications for trace gas retrievals in the near-UV.
Amir H. Souri, Caroline R. Nowlan, Gonzalo González Abad, Lei Zhu, Donald R. Blake, Alan Fried, Andrew J. Weinheimer, Armin Wisthaler, Jung-Hun Woo, Qiang Zhang, Christopher E. Chan Miller, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 20, 9837–9854, https://doi.org/10.5194/acp-20-9837-2020, https://doi.org/10.5194/acp-20-9837-2020, 2020
Short summary
Short summary
For the first time, we provide a joint nonlinear optimal estimate of NOx and NMVOC emissions during the KORUS-AQ campaign by simultaneously incorporating SAO's new product of HCHO columns from OMPS and OMI tropospheric NO2 columns into a regional model. Results demonstrate a promising improvement in the performance of the model in terms of HCHO and NO2 concentrations, which in turn enables us to quantify the impact of the emission changes on different pathways of ozone formation and loss.
James Barry, Dirk Böttcher, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Stefanie Meilinger, Christopher Schirrmeister, Hartwig Deneke, Jonas Witthuhn, and Felix Gödde
Adv. Sci. Res., 17, 165–173, https://doi.org/10.5194/asr-17-165-2020, https://doi.org/10.5194/asr-17-165-2020, 2020
Short summary
Short summary
The power output of solar photovoltaic (PV) modules depends largely upon incident solar radiation as well as PV module temperature. Although irradiance can fluctuate rapidly under broken cloud conditions, module temperature is subject to latency due to the solar panel's heat capacity. In order to reconcile this difference a simple four-parameter model is successfully employed to describe the dynamics of PV module temperature as a function of atmospheric conditions.
Daniel H. Cusworth, Daniel J. Jacob, Daniel J. Varon, Christopher Chan Miller, Xiong Liu, Kelly Chance, Andrew K. Thorpe, Riley M. Duren, Charles E. Miller, David R. Thompson, Christian Frankenberg, Luis Guanter, and Cynthia A. Randles
Atmos. Meas. Tech., 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019, https://doi.org/10.5194/amt-12-5655-2019, 2019
Short summary
Short summary
We examine the potential for global detection of methane plumes from individual point sources with the new generation of spaceborne imaging spectrometers scheduled for launch in 2019–2025. We perform methane retrievals on simulated scenes with varying surfaces and atmospheric methane concentrations. Our results suggest that imaging spectrometers in space could play a transformative role in the future for quantifying methane emissions from point sources on a global scale.
Juseon Bak, Kang-Hyeon Baek, Jae-Hwan Kim, Xiong Liu, Jhoon Kim, and Kelly Chance
Atmos. Meas. Tech., 12, 5201–5215, https://doi.org/10.5194/amt-12-5201-2019, https://doi.org/10.5194/amt-12-5201-2019, 2019
Short summary
Short summary
GEMS will be launched in late 2019 on board the GeoKOMPSAT (Geostationary Korea Multi-Purpose Satellite) to measure O3, NO2, SO2, H2CO, CHOCHO, and aerosols in East Asia. To support the development of the GEMS ozone profile algorithm, we perform the cross-evaluation of simulated GEMS ozone profile retrievals based on optimal estimation and ozonesonde measurements within the GEMS domain.
Huiqun Wang, Amir Hossein Souri, Gonzalo González Abad, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 12, 5183–5199, https://doi.org/10.5194/amt-12-5183-2019, https://doi.org/10.5194/amt-12-5183-2019, 2019
Short summary
Short summary
Total column water vapor (TCWV) is retrieved from the spectra obtained by the Ozone Monitoring Instrument (OMI). Data filtering criteria are recommended. The OMI data generally compare well with reference datasets over both land and the oceans. The data are useful for a variety of applications spanning a range of spatial and temporal scales, such as atmospheric rivers, corn sweat and El Niño.
Juseon Bak, Xiong Liu, Kang Sun, Kelly Chance, and Jae-Hwan Kim
Atmos. Meas. Tech., 12, 3777–3788, https://doi.org/10.5194/amt-12-3777-2019, https://doi.org/10.5194/amt-12-3777-2019, 2019
Short summary
Short summary
This work improves OMI ozone profile retrievals by accounting for spectral fit residuals caused by slit function errors as a pseudo absorber in the optimal-estimation-based spectral fitting process.
Hyeong-Ahn Kwon, Rokjin J. Park, Gonzalo González Abad, Kelly Chance, Thomas P. Kurosu, Jhoon Kim, Isabelle De Smedt, Michel Van Roozendael, Enno Peters, and John Burrows
Atmos. Meas. Tech., 12, 3551–3571, https://doi.org/10.5194/amt-12-3551-2019, https://doi.org/10.5194/amt-12-3551-2019, 2019
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) will be launched by South Korea in 2019, and it will measure radiances ranging from 300 to 500 nm every hour with a fine spatial resolution of 7 km x 8 km over Seoul in South Korea to monitor column concentrations of air pollutants including O3, NO2, SO2, and HCHO, as well as aerosol optical properties. This paper describes a GEMS formaldehyde retrieval algorithm including a number of sensitivity tests for algorithm evaluation.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Kang Sun, Lei Zhu, Karen Cady-Pereira, Christopher Chan Miller, Kelly Chance, Lieven Clarisse, Pierre-François Coheur, Gonzalo González Abad, Guanyu Huang, Xiong Liu, Martin Van Damme, Kai Yang, and Mark Zondlo
Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018, https://doi.org/10.5194/amt-11-6679-2018, 2018
Short summary
Short summary
An agile, physics-based approach is developed to oversample irregular satellite observations to a high-resolution common grid. Instead of assuming each sounding as a point or a polygon as in previous methods, the proposed physical oversampling represents soundings as distributions of sensitivity on the ground. This sensitivity distribution can be determined by the spatial response function of each satellite sensor, parameterized as generalized 2-D super Gaussian functions.
Caroline R. Nowlan, Xiong Liu, Scott J. Janz, Matthew G. Kowalewski, Kelly Chance, Melanie B. Follette-Cook, Alan Fried, Gonzalo González Abad, Jay R. Herman, Laura M. Judd, Hyeong-Ahn Kwon, Christopher P. Loughner, Kenneth E. Pickering, Dirk Richter, Elena Spinei, James Walega, Petter Weibring, and Andrew J. Weinheimer
Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, https://doi.org/10.5194/amt-11-5941-2018, 2018
Short summary
Short summary
The GEO-CAPE Airborne Simulator (GCAS) was developed in support of future air quality and ocean color geostationary satellite missions. GCAS flew in its first field campaign on NASA's King Air B-200 aircraft during DISCOVER-AQ Texas in 2013. In this paper, we determine nitrogen dioxide and formaldehyde columns over Houston from the GCAS air quality sensor and compare those results with measurements made from ground-based Pandora spectrometers and in situ airborne instruments.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787–14798, https://doi.org/10.5194/acp-18-14787-2018, https://doi.org/10.5194/acp-18-14787-2018, 2018
Short summary
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Robyn Butler, Paul I. Palmer, Liang Feng, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Stephen A. Montzka, Laura L. Pan, Ross J. Salawitch, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 13135–13153, https://doi.org/10.5194/acp-18-13135-2018, https://doi.org/10.5194/acp-18-13135-2018, 2018
Short summary
Short summary
Natural sources of short-lived bromoform and dibromomethane are important for determining the inorganic bromine budget in the stratosphere that drives ozone loss. Two new modelling techniques describe how different geographical source regions influence their atmospheric variability over the western Pacific. We find that it is driven primarily by open ocean sources, and we use atmospheric observations to help estimate their contributions to the upper tropospheric inorganic bromine budget.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, and Zhaonan Cai
Atmos. Meas. Tech., 11, 17–32, https://doi.org/10.5194/amt-11-17-2018, https://doi.org/10.5194/amt-11-17-2018, 2018
Short summary
Short summary
In this paper, we focus on the validation of OMI ozone (PROFOZ) product in the stratosphere using MLS ozone observations. This paper, with its companion paper focusing on the validation in the troposphere by using global ozonesonde observations, provides us with a comprehensive understanding of the data quality of OMI PROFOZ product and impacts of the “row anomaly”.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Juseon Bak, Xiong Liu, Jae-Hwan Kim, David P. Haffner, Kelly Chance, Kai Yang, and Kang Sun
Atmos. Meas. Tech., 10, 4373–4388, https://doi.org/10.5194/amt-10-4373-2017, https://doi.org/10.5194/amt-10-4373-2017, 2017
Short summary
Short summary
This paper verifies and corrects the Ozone Mapping and Profiler Suite (OMPS) nadir mapper (NM) level 1B v2.0 measurements to retrieve reliable ozone profile and tropospheric ozone using an optimal estimation inversion with the fitting window of 302.5–340 nm. We apply "soft calibration" and "common mode correction" to OMPS radiances to eliminate systematic errors in the fitting residuals and derive random-noise measurement errors accounting for both OMPS radiances and forward model calculation.
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Kang Sun, Xiong Liu, Guanyu Huang, Gonzalo González Abad, Zhaonan Cai, Kelly Chance, and Kai Yang
Atmos. Meas. Tech., 10, 3677–3695, https://doi.org/10.5194/amt-10-3677-2017, https://doi.org/10.5194/amt-10-3677-2017, 2017
Short summary
Short summary
This study derives on-orbit slit functions from the OMI irradiance spectra. The results differ from the widely used preflight slit functions. The on-orbit changes of OMI slit functions are insignificant over time after accounting for the solar activity. Applying the derived on-orbit slit functions to ozone-profile retrieval shows substantial improvements over the preflight slit functions based on comparisons with ozonesonde validations.
Christopher Chan Miller, Daniel J. Jacob, Eloise A. Marais, Karen Yu, Katherine R. Travis, Patrick S. Kim, Jenny A. Fisher, Lei Zhu, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Jennifer Kaiser, Kyung-Eun Min, Steven S. Brown, Rebecca A. Washenfelder, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017, https://doi.org/10.5194/acp-17-8725-2017, 2017
Short summary
Short summary
The use of satellite glyoxal observations for estimating isoprene emissions has been limited by knowledge of the glyoxal yield from isoprene. We use SENEX aircraft observations over the southeast US to evaluate glyoxal yields from isoprene in a 3-D atmospheric model. The SENEX observations support a pathway for glyoxal formation in pristine regions that we propose here, which may have implications for improving isoprene emissions estimates from upcoming high-resolution geostationary satellites.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Hyeong-Ahn Kwon, Rokjin J. Park, Jaein I. Jeong, Seungun Lee, Gonzalo González Abad, Thomas P. Kurosu, Paul I. Palmer, and Kelly Chance
Atmos. Chem. Phys., 17, 4673–4686, https://doi.org/10.5194/acp-17-4673-2017, https://doi.org/10.5194/acp-17-4673-2017, 2017
Short summary
Short summary
A geostationary satellite can measure daytime hourly HCHO columns. Atmospheric conditions such as synoptic meteorology and the presence of other gases and aerosols may affect HCHO measurements. We examine the effects of their temporal variation on the HCHO measurement of a geostationary satellite in East Asia. We find that the hourly variation of other species could be important. Especially the inclusion of hourly aerosol variation in the retrieval could lead to improving HCHO measurements.
Kevin Wolf, André Ehrlich, Tilman Hüneke, Klaus Pfeilsticker, Frank Werner, Martin Wirth, and Manfred Wendisch
Atmos. Chem. Phys., 17, 4283–4303, https://doi.org/10.5194/acp-17-4283-2017, https://doi.org/10.5194/acp-17-4283-2017, 2017
Short summary
Short summary
The potential of airborne radiance measurements in the sideward and nadir directions for cirrus remote sensing is investigated. Therefore radiative transfer simulations were used and the sensitivity of upward radiance with respect to optical thickness, effective radius, surface albedo, wavelength and viewing angle was studied. It was shown that sideward observations lead to more accurate retrieval results. Investigating a case study of ML-CIRRUS, these findings are confirmed.
Christopher E. Sioris, Landon A. Rieger, Nicholas D. Lloyd, Adam E. Bourassa, Chris Z. Roth, Douglas A. Degenstein, Claude Camy-Peyret, Klaus Pfeilsticker, Gwenaël Berthet, Valéry Catoire, Florence Goutail, Jean-Pierre Pommereau, and Chris A. McLinden
Atmos. Meas. Tech., 10, 1155–1168, https://doi.org/10.5194/amt-10-1155-2017, https://doi.org/10.5194/amt-10-1155-2017, 2017
Short summary
Short summary
A new OSIRIS NO2 retrieval algorithm is described and validated using > 40 balloon-based profile measurements. The validation results indicate a slight improvement relative to the existing operational algorithm in terms of the bias versus the balloon data, particularly in the lower stratosphere. The implication is that this new algorithm should replace the operational one. The motivation was to combine spectral fitting and the SaskTRAN radiative transfer model to achieve an improved product.
Jochen Stutz, Bodo Werner, Max Spolaor, Lisa Scalone, James Festa, Catalina Tsai, Ross Cheung, Santo F. Colosimo, Ugo Tricoli, Rasmus Raecke, Ryan Hossaini, Martyn P. Chipperfield, Wuhu Feng, Ru-Shan Gao, Eric J. Hintsa, James W. Elkins, Fred L. Moore, Bruce Daube, Jasna Pittman, Steven Wofsy, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 1017–1042, https://doi.org/10.5194/amt-10-1017-2017, https://doi.org/10.5194/amt-10-1017-2017, 2017
Short summary
Short summary
A new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument was developed for NASA’s Global Hawk unmanned aerial system during the Airborne Tropical TRopopause EXperiment to study trace gases in the tropical tropopause layer. A new technique that uses in situ and DOAS O3 observations together with radiative transfer calculations allows the retrieval of mixing ratios from the slant column densities of BrO and NO2 at high accuracies of 0.5 ppt and 15 ppt, respectively.
Kang Sun, Xiong Liu, Caroline R. Nowlan, Zhaonan Cai, Kelly Chance, Christian Frankenberg, Richard A. M. Lee, Randy Pollock, Robert Rosenberg, and David Crisp
Atmos. Meas. Tech., 10, 939–953, https://doi.org/10.5194/amt-10-939-2017, https://doi.org/10.5194/amt-10-939-2017, 2017
Short summary
Short summary
Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy. Measured ILS during preflight experiments has been used in the OCO-2 CO2 retrieval. This study derives the on-orbit ILS of OCO-2 using its solar measurements and answers the questions whether on-orbit ILS has changed compared to preflight and whether it varies during the mission.
Gwenaël Berthet, Fabrice Jégou, Valéry Catoire, Gisèle Krysztofiak, Jean-Baptiste Renard, Adam E. Bourassa, Doug A. Degenstein, Colette Brogniez, Marcel Dorf, Sebastian Kreycy, Klaus Pfeilsticker, Bodo Werner, Franck Lefèvre, Tjarda J. Roberts, Thibaut Lurton, Damien Vignelles, Nelson Bègue, Quentin Bourgeois, Daniel Daugeron, Michel Chartier, Claude Robert, Bertrand Gaubicher, and Christophe Guimbaud
Atmos. Chem. Phys., 17, 2229–2253, https://doi.org/10.5194/acp-17-2229-2017, https://doi.org/10.5194/acp-17-2229-2017, 2017
Short summary
Short summary
Since the last major volcanic event, i.e. the Pinatubo eruption in 1991, only
moderateeruptions have regularly injected sulfur into the stratosphere, typically enhancing the aerosol loading for several months. We investigate here for the first time the chemical perturbation associated with the Sarychev eruption in June 2009, using balloon-borne instruments and model calculations. Some chemical compounds are significantly affected by the aerosols, but the impact on stratospheric ozone is weak.
Bodo Werner, Jochen Stutz, Max Spolaor, Lisa Scalone, Rasmus Raecke, James Festa, Santo Fedele Colosimo, Ross Cheung, Catalina Tsai, Ryan Hossaini, Martyn P. Chipperfield, Giorgio S. Taverna, Wuhu Feng, James W. Elkins, David W. Fahey, Ru-Shan Gao, Erik J. Hintsa, Troy D. Thornberry, Free Lee Moore, Maria A. Navarro, Elliot Atlas, Bruce C. Daube, Jasna Pittman, Steve Wofsy, and Klaus Pfeilsticker
Atmos. Chem. Phys., 17, 1161–1186, https://doi.org/10.5194/acp-17-1161-2017, https://doi.org/10.5194/acp-17-1161-2017, 2017
Short summary
Short summary
The paper reports on inorganic and organic bromine measured in the tropical tropopause layer (TTL) over the eastern Pacific in early 2013. Bryinorg is found to increase from a mean of 2.63 ± 1.04 ppt for θ in the range of 350–360 K to 5.11 ± 1.57 ppt for θ=390 ± 400 K, whereas in the subtropical lower stratosphere, it reaches 7.66 ± 2.95 ppt for θ in the range of 390–400 K. Within the TTL, total bromine is found to range from 20.3 ppt to 22.3 ppt.
Daniel J. Jacob, Alexander J. Turner, Joannes D. Maasakkers, Jianxiong Sheng, Kang Sun, Xiong Liu, Kelly Chance, Ilse Aben, Jason McKeever, and Christian Frankenberg
Atmos. Chem. Phys., 16, 14371–14396, https://doi.org/10.5194/acp-16-14371-2016, https://doi.org/10.5194/acp-16-14371-2016, 2016
Short summary
Short summary
Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. Atmospheric methane has been measured continuously from space since 2003, and new instruments are planned to launch in the near future that will greatly expand the capabilities of space-based observations. We review the value of current, future, and proposed satellite observations to better quantify methane emissions from the global scale down to the scale of point sources.
Lei Zhu, Daniel J. Jacob, Patrick S. Kim, Jenny A. Fisher, Karen Yu, Katherine R. Travis, Loretta J. Mickley, Robert M. Yantosca, Melissa P. Sulprizio, Isabelle De Smedt, Gonzalo González Abad, Kelly Chance, Can Li, Richard Ferrare, Alan Fried, Johnathan W. Hair, Thomas F. Hanisco, Dirk Richter, Amy Jo Scarino, James Walega, Petter Weibring, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 13477–13490, https://doi.org/10.5194/acp-16-13477-2016, https://doi.org/10.5194/acp-16-13477-2016, 2016
Short summary
Short summary
HCHO column data are widely used as a proxy for VOCs emissions, but validation of the data has been extremely limited. We use accurate aircraft observations to validate and intercompare 6 HCHO retrievals with GEOS-Chem as the intercomparison platform. Retrievals are interconsistent in spatial variability over the SE US and in daily variability, but are biased low by 20–51 %. Our work supports the use of HCHO column as a quantitative proxy for isoprene emission after correction of the low bias.
Huiqun Wang, Gonzalo Gonzalez Abad, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 16, 11379–11393, https://doi.org/10.5194/acp-16-11379-2016, https://doi.org/10.5194/acp-16-11379-2016, 2016
Short summary
Short summary
Water vapor is highly important. The OMI total column water vapor product retrieved using SAO's version 1.0 algorithm agrees well with other reference products over the land but has a low bias over the ocean. The updated OMI water vapor product retrieved using SAO's version 2.1 algorithm largely eliminates the low bias over the ocean, improving the land/ocean consistency and the overall data quality. This dataset can benefit a variety of scientific studies and practical applications.
Juseon Bak, Xiong Liu, Jae H. Kim, Matthew T. Deland, and Kelly Chance
Atmos. Meas. Tech., 9, 4521–4531, https://doi.org/10.5194/amt-9-4521-2016, https://doi.org/10.5194/amt-9-4521-2016, 2016
Short summary
Short summary
The main focus of this paper is improving an error of OMI nadir ozone profile retrievals due to the presence of polar mesospheric clouds (PMCs), consisting of small light-scattering particles at an altitude of 80–85 km. This error is shown to be systematic bias from ~ −2 at 2 hPa to ~ −20 % at 0.5 hPa and significantly correlated with brightness of PMCs. We reduce this interference of PMCs on ozone retrievals by including the PMC optical depth in the forward-model calculation and retrieval.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Gonzalo González Abad, Alexander Vasilkov, Colin Seftor, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 9, 2797–2812, https://doi.org/10.5194/amt-9-2797-2016, https://doi.org/10.5194/amt-9-2797-2016, 2016
Short summary
Short summary
The multi-spectral possibilities of the OMPS Nadir Mapper instrument are exploited here to perform formaldehyde retrievals. Orbiting the Earth at 824 km, OMPS observes the atmosphere in a time frame similar to instruments belonging to NASA's A-Train constellation, 01:30. We show that OMPS is well suited to measure formaldehyde despite its spectral resolution of 1nm. The comparison of OMPS retrievals with OMI products show good temporal correlation.
Caroline R. Nowlan, Xiong Liu, James W. Leitch, Kelly Chance, Gonzalo González Abad, Cheng Liu, Peter Zoogman, Joshua Cole, Thomas Delker, William Good, Frank Murcray, Lyle Ruppert, Daniel Soo, Melanie B. Follette-Cook, Scott J. Janz, Matthew G. Kowalewski, Christopher P. Loughner, Kenneth E. Pickering, Jay R. Herman, Melinda R. Beaver, Russell W. Long, James J. Szykman, Laura M. Judd, Paul Kelley, Winston T. Luke, Xinrong Ren, and Jassim A. Al-Saadi
Atmos. Meas. Tech., 9, 2647–2668, https://doi.org/10.5194/amt-9-2647-2016, https://doi.org/10.5194/amt-9-2647-2016, 2016
Short summary
Short summary
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a remote sensing airborne instrument developed in support of future air quality satellite missions that will operate from geostationary orbit. GeoTASO flew in its first intensive field campaign during the DISCOVER-AQ 2013 Earth Venture Mission over Houston, Texas. This paper introduces the instrument and data analysis, and presents GeoTASO's first observations of NO2 at 250 m x 250 m spatial resolution.
Christopher Chan Miller, Daniel J. Jacob, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 16, 4631–4639, https://doi.org/10.5194/acp-16-4631-2016, https://doi.org/10.5194/acp-16-4631-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) are important precursors for photochemical smog.
Glyoxal is an organic compound produced in the atmosphere from reactions of larger VOCs. OMI satellite observations of glyoxal show a large hotspot over the Pearl River delta. The hotspot can be explained by industrial paint and solvent emissions of aromatic VOCs. Our work shows OMI observations are consistent with current VOC emissions estimates, whereas previous work has suggested large underestimates.
U. Jeong, J. Kim, C. Ahn, O. Torres, X. Liu, P. K. Bhartia, R. J. D. Spurr, D. Haffner, K. Chance, and B. N. Holben
Atmos. Chem. Phys., 16, 177–193, https://doi.org/10.5194/acp-16-177-2016, https://doi.org/10.5194/acp-16-177-2016, 2016
Short summary
Short summary
An aerosol retrieval and error analysis algorithm using OMI measurements based on an optimal-estimation method was developed in this study. The aerosol retrievals were validated using the DRAGON campaign products. The estimated errors of the retrievals represented the actual biases between retrieval and AERONET measurements well. The retrievals, with their estimated uncertainties, are expected to be valuable for relevant studies, such as trace gas retrieval and data assimilation.
T. P. Canty, L. Hembeck, T. P. Vinciguerra, D. C. Anderson, D. L. Goldberg, S. F. Carpenter, D. J. Allen, C. P. Loughner, R. J. Salawitch, and R. R. Dickerson
Atmos. Chem. Phys., 15, 10965–10982, https://doi.org/10.5194/acp-15-10965-2015, https://doi.org/10.5194/acp-15-10965-2015, 2015
J. Bak, X. Liu, J. H. Kim, M. T. Deland, and K. Chance
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-25907-2015, https://doi.org/10.5194/acpd-15-25907-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This work demonstrated the interference of tenuous PMCs on OMI ozone profile retrievals above 6hPa. The presence of PMCs leads to the systematic biases of -2% at 2hPa and -20% at 0.5hPa in OMI retrievals, which are significantly correlated with brightness of PMCs. We perform simultaneous retrievals of PMC optical depth with ozone using optimal estimation technique, to reduce the interference on ozone profile retrievals. As a result, the negative OMI biases are reduced to within ±10%.
S. Hayashida, X. Liu, A. Ono, K. Yang, and K. Chance
Atmos. Chem. Phys., 15, 9865–9881, https://doi.org/10.5194/acp-15-9865-2015, https://doi.org/10.5194/acp-15-9865-2015, 2015
Short summary
Short summary
The lower tropospheric ozone distribution maps were first obtained from the recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite. We found significant enhancement of ozone in the lower troposphere over central and eastern China (CEC), with Shandong Province as its center, and most notable in June in any given year. Similar seasonal variations were observed throughout the 9-year OMI measurement period of 2005 to 2013.
C. Liu, X. Liu, M. G. Kowalewski, S. J. Janz, G. González Abad, K. E. Pickering, K. Chance, and L. N. Lamsal
Atmos. Meas. Tech., 8, 751–759, https://doi.org/10.5194/amt-8-751-2015, https://doi.org/10.5194/amt-8-751-2015, 2015
Short summary
Short summary
We characterize the wavelengths and slit functions of Airborne Compact Atmospheric Mapper (ACAM) measurements in ~304--500 nm through the cross-correlation technique. It is necessary to account for atmospheric gas absorption and the ring effect. The derived broadened Gaussian slit functions agree very well with laboratory measurements. Trace gas retrieval comparisons demonstrate that the cross-correlation technique can be reliably used to characterize slit functions.
J. Bak, X. Liu, J. H. Kim, K. Chance, and D. P. Haffner
Atmos. Chem. Phys., 15, 667–683, https://doi.org/10.5194/acp-15-667-2015, https://doi.org/10.5194/acp-15-667-2015, 2015
G. González Abad, X. Liu, K. Chance, H. Wang, T. P. Kurosu, and R. Suleiman
Atmos. Meas. Tech., 8, 19–32, https://doi.org/10.5194/amt-8-19-2015, https://doi.org/10.5194/amt-8-19-2015, 2015
Short summary
Short summary
We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde retrieval algorithm for the Ozone Monitoring Instrument (OMI), which is the operational retrieval for NASA OMI H2CO.
R. P. Fernandez, R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez
Atmos. Chem. Phys., 14, 13391–13410, https://doi.org/10.5194/acp-14-13391-2014, https://doi.org/10.5194/acp-14-13391-2014, 2014
Short summary
Short summary
We propose the existence of a daytime “tropical ring of atomic bromine” surrounding the tropics at a height between 15 and 19km. Our simulations show that VSL bromocarbons produce increases of 3pptv for inorganic bromine and 2pptv for organic bromine in the tropical TTL on an annual average, resulting in a total stratospheric bromine injection of 5pptv. This result suggests that the inorganic bromine injected into the stratosphere may be larger than that from VSL bromocarbons.
C. Chan Miller, G. Gonzalez Abad, H. Wang, X. Liu, T. Kurosu, D. J. Jacob, and K. Chance
Atmos. Meas. Tech., 7, 3891–3907, https://doi.org/10.5194/amt-7-3891-2014, https://doi.org/10.5194/amt-7-3891-2014, 2014
L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker
Atmos. Chem. Phys., 14, 9555–9566, https://doi.org/10.5194/acp-14-9555-2014, https://doi.org/10.5194/acp-14-9555-2014, 2014
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
H. Wang, X. Liu, K. Chance, G. González Abad, and C. Chan Miller
Atmos. Meas. Tech., 7, 1901–1913, https://doi.org/10.5194/amt-7-1901-2014, https://doi.org/10.5194/amt-7-1901-2014, 2014
P. Zoogman, D. J. Jacob, K. Chance, X. Liu, M. Lin, A. Fiore, and K. Travis
Atmos. Chem. Phys., 14, 6261–6271, https://doi.org/10.5194/acp-14-6261-2014, https://doi.org/10.5194/acp-14-6261-2014, 2014
Q. Liang, E. Atlas, D. Blake, M. Dorf, K. Pfeilsticker, and S. Schauffler
Atmos. Chem. Phys., 14, 5781–5792, https://doi.org/10.5194/acp-14-5781-2014, https://doi.org/10.5194/acp-14-5781-2014, 2014
R. Hossaini, H. Mantle, M. P. Chipperfield, S. A. Montzka, P. Hamer, F. Ziska, B. Quack, K. Krüger, S. Tegtmeier, E. Atlas, S. Sala, A. Engel, H. Bönisch, T. Keber, D. Oram, G. Mills, C. Ordóñez, A. Saiz-Lopez, N. Warwick, Q. Liang, W. Feng, F. Moore, B. R. Miller, V. Marécal, N. A. D. Richards, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013, https://doi.org/10.5194/acp-13-11819-2013, 2013
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
P. S. Kim, D. J. Jacob, X. Liu, J. X. Warner, K. Yang, K. Chance, V. Thouret, and P. Nedelec
Atmos. Chem. Phys., 13, 9321–9335, https://doi.org/10.5194/acp-13-9321-2013, https://doi.org/10.5194/acp-13-9321-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
J. Bak, X. Liu, J. C. Wei, L. L. Pan, K. Chance, and J. H. Kim
Atmos. Meas. Tech., 6, 2239–2254, https://doi.org/10.5194/amt-6-2239-2013, https://doi.org/10.5194/amt-6-2239-2013, 2013
H. He, J. W. Stehr, J. C. Hains, D. J. Krask, B. G. Doddridge, K. Y. Vinnikov, T. P. Canty, K. M. Hosley, R. J. Salawitch, H. M. Worden, and R. R. Dickerson
Atmos. Chem. Phys., 13, 7859–7874, https://doi.org/10.5194/acp-13-7859-2013, https://doi.org/10.5194/acp-13-7859-2013, 2013
P. D. Hamer, V. Marécal, R. Hossaini, M. Pirre, N. Warwick, M. Chipperfield, A. A. Samah, N. Harris, A. Robinson, B. Quack, A. Engel, K. Krüger, E. Atlas, K. Subramaniam, D. Oram, Emma C. Leedham Elvidge, G. Mills, K. Pfeilsticker, S. Sala, T. Keber, H. Bönisch, L. K. Peng, M. S. M. Nadzir, P. T. Lim, A. Mujahid, A. Anton, H. Schlager, V. Catoire, G. Krysztofiak, S. Fühlbrügge, M. Dorf, and W. T. Sturges
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-20611-2013, https://doi.org/10.5194/acpd-13-20611-2013, 2013
Revised manuscript not accepted
S. Kreycy, C. Camy-Peyret, M. P. Chipperfield, M. Dorf, W. Feng, R. Hossaini, L. Kritten, B. Werner, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 6263–6274, https://doi.org/10.5194/acp-13-6263-2013, https://doi.org/10.5194/acp-13-6263-2013, 2013
T. Canty, N. R. Mascioli, M. D. Smarte, and R. J. Salawitch
Atmos. Chem. Phys., 13, 3997–4031, https://doi.org/10.5194/acp-13-3997-2013, https://doi.org/10.5194/acp-13-3997-2013, 2013
K. Großmann, U. Frieß, E. Peters, F. Wittrock, J. Lampel, S. Yilmaz, J. Tschritter, R. Sommariva, R. von Glasow, B. Quack, K. Krüger, K. Pfeilsticker, and U. Platt
Atmos. Chem. Phys., 13, 3363–3378, https://doi.org/10.5194/acp-13-3363-2013, https://doi.org/10.5194/acp-13-3363-2013, 2013
R. A. Stachnik, L. Millán, R. Jarnot, R. Monroe, C. McLinden, S. Kühl, J. Puķīte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J. P. Pommereau, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 3307–3319, https://doi.org/10.5194/acp-13-3307-2013, https://doi.org/10.5194/acp-13-3307-2013, 2013
J. Bak, J. H. Kim, X. Liu, K. Chance, and J. Kim
Atmos. Meas. Tech., 6, 239–249, https://doi.org/10.5194/amt-6-239-2013, https://doi.org/10.5194/amt-6-239-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Troposphere–stratosphere-integrated bromine monoxide (BrO) profile retrieval over the central Pacific Ocean
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Implementation and application of an improved phase spectrum determination scheme for Fourier Transform Spectrometry
Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission
Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection
Assessment of the contribution of the Meteosat Third Generation Infrared Sounder (MTG-IRS) for the characterisation of ozone over Europe
Assessing the potential of free-tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events
Current potential of CH4 emission estimates using TROPOMI in the Middle East
A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument
Developments on a 22GHz Microwave Radiometer and Reprocessing of 13-Year Time Series for Water Vapour Studies
Retrievals of water vapour and temperature exploiting the far-infrared: application to aircraft observations in preparation for the FORUM mission
Quantitative estimate of sources of uncertainty in drone-based methane emission measurements
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Long-term global measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared Sounder
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Accounting for the effect of aerosols in GHGSat methane retrieval
A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B
Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite
IMK–IAA MIPAS retrieval version 8: CH4 and N2O
Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Forward Model Emulator for Atmospheric Radiative Transfer Using Gaussian Processes And Cross Validation
Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates
Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera
The transition to new ozone absorption cross sections for Dobson and Brewer total ozone measurements
In-Flight Estimation of Instrument Spectral Response Functions Using Sparse Representations
Remote sensing of lower-middle thermosphere temperatures using the N2 Lyman-Birge-Hopfield (LBH) bands
Advantages of assimilating multispectral satellite retrievals of atmospheric composition: a demonstration using MOPITT carbon monoxide products
An improved OMI ozone profile research product version 2.0 with collection 4 L1b data and algorithm updates
Tropospheric ozone column dataset from OMPS-LP/OMPS-NM limb–nadir matching
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
The importance of digital elevation model accuracy in XCO2 retrievals: improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product
Level0 to Level1B processor for MethaneAIR
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
The GeoCarb greenhouse gas retrieval algorithm: simulations and sensitivity to sources of uncertainty
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
Separating and Quantifying Facility-Level Methane Emissions with Overlapping Plumes for Spaceborne Methane Monitoring
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025, https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
Short summary
Carbon dioxide (CO2) and methane (CH4) are the main anthropogenic greenhouse gases. The European Copernicus CO2 monitoring satellite mission CO2M will provide measurements of their atmospheric concentrations, but the accuracy requirements are demanding and conventional retrieval methods computationally expensive. We present a new retrieval algorithm based on artificial neural networks that has the potential to meet the stringent requirements of the CO2M mission with minimal computational effort.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024, https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows that the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024, https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Short summary
This paper presents a new machine learning model that allows us to compute NO2 concentration profiles from satellite observations. A neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. This is the first model of its kind. We present a thorough model validation study, covering various seasons and regions of the world.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024, https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Short summary
CHORA, an advanced cloud convective differential technique, enhances the accuracy of tropospheric-ozone retrievals. Unlike the traditional Pacific cloud reference sector scheme, CHORA introduces a local-cloud reference sector and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods and so is the preferred choice, especially in future geostationary satellite missions.
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024, https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Short summary
Solar absorption spectra near 2967 cm−1 recorded by a ground-based FTIR with a high spectral resolution of 0.0035 cm-1 are applied to retrieve C3H8 columns for the first time in Xianghe, China, within the NDACC-IRWG. The mean and standard deviation of the C3H8 columns are 1.80 ± 0.81 (1σ) × 1015 molec. cm-2. Good correlations are found between C3H8 and other non-methane hydrocarbons, such as C2H6 (R = 0.84) and C2H2 (R = 0.79), as well as between C3H8 and CO (R = 0.72).
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024, https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Short summary
Landscape fires produce vast amounts of smoke, affecting the atmosphere locally and globally. Whether a fire is flaming or smouldering strongly impacts the rate at which smoke is produced as well as its composition. This study tested two methods to determine these combustion phases in laboratory fires and compared them to the smoke emitted. One of these methods improved estimates of smoke emission significantly. This suggests potential for improvement in global emission estimates.
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024, https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary
Short summary
In this study, we developed an advanced retrieval algorithm for tropospheric NO2 columns from geostationary satellite spectrometers and applied it to GEMS measurements. The DLR GEMS NO2 retrieval algorithm follows the heritage from previous and existing algorithms, but improved approaches are applied to reflect the specific features of geostationary satellites. The DLR GEMS NO2 retrievals demonstrate a good capability for monitoring diurnal variability with a high spatial resolution.
Theodore K. Koenig, François Hendrick, Douglas Kinnison, Christopher F. Lee, Michel Van Roozendael, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5911–5934, https://doi.org/10.5194/amt-17-5911-2024, https://doi.org/10.5194/amt-17-5911-2024, 2024
Short summary
Short summary
Atmospheric bromine destroys ozone, impacts oxidation capacity, and oxidizes mercury into its toxic form. We constrain bromine by remote sensing of BrO from a mountaintop. Previous measurements retrieved two to three pieces of information vertically; we apply new methods to get five and a half vertically and two more in time. We compare with aircraft measurements to validate the methods and look at variations in BrO over the Pacific.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-140, https://doi.org/10.5194/amt-2024-140, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The primary measurement result delivered by a Fourier Transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by a Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Chia-Pang Kuo and Christian Kummerow
Atmos. Meas. Tech., 17, 5637–5653, https://doi.org/10.5194/amt-17-5637-2024, https://doi.org/10.5194/amt-17-5637-2024, 2024
Short summary
Short summary
A small satellite about the size of a shoe box, named TEMPEST, carries only a microwave sensor and is designed to measure the water cycle of the Earth from space in an economical way compared with traditional satellites, which have additional infrared sensors. To overcome the limitation, extra infrared signals from GOES-R ABI are combined with TEMPEST microwave measurements. Compared with ground observations, improved humidity information is extracted from the merged TEMPEST and ABI signals.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Matthieu Dogniaux and Cyril Crevoisier
Atmos. Meas. Tech., 17, 5373–5396, https://doi.org/10.5194/amt-17-5373-2024, https://doi.org/10.5194/amt-17-5373-2024, 2024
Short summary
Short summary
Many CO2-observing satellite concepts, with very different design choices and trade-offs, are expected to be put into orbit during the upcoming decade. This work uses numerical simulations to explore the impact of critical design parameters on the performance of upcoming CO2-observing satellite concepts.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Matthias Schneider, Kinya Toride, Farahnaz Khosrawi, Frank Hase, Benjamin Ertl, Christopher J. Diekmann, and Kei Yoshimura
Atmos. Meas. Tech., 17, 5243–5259, https://doi.org/10.5194/amt-17-5243-2024, https://doi.org/10.5194/amt-17-5243-2024, 2024
Short summary
Short summary
Despite its importance for extreme weather and climate feedbacks, atmospheric convection is not well constrained. This study assesses the potential of novel tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events. We find that the impact of the isotopologues is small for stable atmospheric conditions but significant for unstable conditions, which have the strongest societal impacts (e.g. storms and flooding).
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, and Jhoon Kim
Atmos. Meas. Tech., 17, 5147–5159, https://doi.org/10.5194/amt-17-5147-2024, https://doi.org/10.5194/amt-17-5147-2024, 2024
Short summary
Short summary
We present an improved NO2 product from GEMS by calibrating it to TROPOMI using machine learning and by reprocessing both satellite products to adopt common NO2 profiles. Our corrected GEMS product combines the high data density of GEMS with the accuracy of TROPOMI, supporting the combined use for analyses of East Asia air quality including emissions and chemistry. This method can be extended to other species and geostationary satellites including TEMPO and Sentinel-4.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474, https://doi.org/10.5194/egusphere-2024-2474, 2024
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle atmosphere water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13 year long dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Richard Siddans, Jonathan Murray, Laura Warwick, and Stuart Fox
EGUsphere, https://doi.org/10.5194/egusphere-2024-2419, https://doi.org/10.5194/egusphere-2024-2419, 2024
Short summary
Short summary
Understanding the distribution of water vapour within our atmosphere is vital for understanding the Earth’s energy balance. Observations from the upcoming FORUM satellite are theorised to be particularly sensitive to this distribution. We exploit this sensitivity to extend the RAL Infrared Microwave Sounding retrieval scheme for the FORUM satellite. This scheme is evaluated on both simulated and observed measurements and shows a good agreement to references of the atmospheric state.
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan James Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
EGUsphere, https://doi.org/10.5194/egusphere-2024-1175, https://doi.org/10.5194/egusphere-2024-1175, 2024
Short summary
Short summary
Methane is a potent greenhouse gas. Trustable detection and quantification of methane emissions at facility level is critical to identify the largest sources, and to prioritize them for repair. We provide a systematic analysis of the uncertainty in drone-based methane emission surveys, based on theoretical considerations and historical data sets. We provide guidelines to industry on how to avoid or minimize potential errors in drone-based measurements for methane emission quantification.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024, https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Kelley Wells, Dylan Millet, Jared Brewer, Vivienne Payne, Karen Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2024-1551, https://doi.org/10.5194/egusphere-2024-1551, 2024
Short summary
Short summary
Atmospheric volatile organic compounds affect both air quality and climate. Satellite measurements can help us to assess and predict their global impacts. We present new long-term (2012–2023) measurements of four key VOCs: methanol, ethene, ethyne, and hydrogen cyanide (HCN) from the Cross-track Infrared Sounder. The measurements reflect emissions from major forests, wildfires, and industry, and provide new information to advance understanding of these sources and their changes over time.
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024, https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Short summary
We present a new method for estimating emissions and lifetimes for nitrogen oxides emitted from large cities by using satellite NO2 observations combined with wind fields. The estimate is based on the simultaneous evaluation of the downwind plumes for opposing wind directions. This allows us to derive seasonal mean emissions and lifetimes for 100 cities around the globe.
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Short summary
This study estimated the effects of aerosols on GHGSat satellite methane retrieval and investigated the performance of simultaneously retrieving aerosol and methane information using a multi-angle viewing method. Results suggested that the performance of GHGSat methane retrieval improved when aerosols were considered, and the multi-angle viewing method is insensitive to the satellite angle setting. This performance assessment is useful for improving future GHGSat-like instruments.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Matthieu Dogniaux, Joannes D. Maasakkers, Daniel J. Varon, and Ilse Aben
Atmos. Meas. Tech., 17, 2777–2787, https://doi.org/10.5194/amt-17-2777-2024, https://doi.org/10.5194/amt-17-2777-2024, 2024
Short summary
Short summary
We analyze Landsat 8 (L8) and Sentinel-2B (S-2B) observations of the 2022 Nord Stream 2 methane leak and show how challenging this case is for usual data analysis methods. We provide customized calibrations for this Nord Stream 2 case and assess that no firm conclusion can be drawn from L8 or S-2B single overpasses. However, if we opportunistically assume that L8 and S-2B results are independent, we find an averaged L8 and S-2B combined methane leak rate of 502 ± 464 t h−1.
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas and a current high-priority target for short- to mid-term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing, outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high-spatial-resolution satellite data.
Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 2583–2593, https://doi.org/10.5194/amt-17-2583-2024, https://doi.org/10.5194/amt-17-2583-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas that has been responsible for around 25 % of global warming since the industrial revolution. Consequently identifying and mitigating methane emissions comprise an important step in combating the climate crisis. We develop a new deep learning model to automatically detect methane plumes from satellite images and demonstrate that this can be applied to monitor large methane emissions resulting from the oil and gas industry.
Otto M. Lamminpää, Jouni I. Susiluoto, Jonathan M. Hobbs, James L. McDuffie, Amy J. Braverman, and Houman Owhadi
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-63, https://doi.org/10.5194/amt-2024-63, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We develop and demonstrate a fast forward function emulator for remote sensing of greenhouse gases. These forward functions are computationally expensive to evaluate, and as such the key challenge for many satellite missions in their data processing is the time used in these evaluations. Our method is fast and accurate enough, less than 1 % relative error, so that it could be safely used in operational processing.
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024, https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
Short summary
FOCAL-CO2M is one of the three operational retrieval algorithms which will be used to derive XCO2 and XCH4 from measurements of the forthcoming European CO2M mission. We present results of applications of FOCAL-CO2M to simulated spectra, from which confidence is gained that the algorithm is able to fulfil the challenging requirements on systematic errors for the CO2M mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).
Marvin Knapp, Ralph Kleinschek, Sanam N. Vardag, Felix Külheim, Helge Haveresch, Moritz Sindram, Tim Siegel, Bruno Burger, and André Butz
Atmos. Meas. Tech., 17, 2257–2275, https://doi.org/10.5194/amt-17-2257-2024, https://doi.org/10.5194/amt-17-2257-2024, 2024
Short summary
Short summary
Imaging carbon dioxide (CO2) plumes of anthropogenic sources from planes and satellites has proven valuable for detecting emitters and monitoring climate mitigation efforts. We present the first images of CO2 plumes taken with a ground-based spectral camera, observing a coal-fired power plant as a validation target. We develop a technique to find the source emission strength with an hourly resolution, which reasonably agrees with the expected emissions under favorable conditions.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
EGUsphere, https://doi.org/10.48550/arXiv.2404.05298, https://doi.org/10.48550/arXiv.2404.05298, 2024
Short summary
Short summary
This paper explores new techniques based on sparse representations for estimating the spectral response functions of high-resolution spectrometers. The method is highly competitive with commonly used parametric models yielding more accurate estimates while accounting for wavelength dependence. The resulting normalized estimation errors of the spectrometer spectral responses are less than 1 %, which will allow better quantification of trace gas concentrations at the Earth surface.
Richard Eastes, J. Scott Evans, Quan Gan, Bill McClintock, and Jerry Lumpe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-52, https://doi.org/10.5194/amt-2024-52, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The temperature is essential to understanding the thermosphere. Most temperature measurements have indirect or had large uncertainties, especially in the lower-middle thermosphere where data are rarely available. Since October 2018 NASA’s GOLD mission has produced disk images of neutral temperatures near 160 km at locations over the Americas and Atlantic Ocean. This paper discusses both temperature retrieval techniques and issues in interpreting GOLD’s images of temperatures.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Javier Roger, Luis Guanter, Javier Gorroño, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 1333–1346, https://doi.org/10.5194/amt-17-1333-2024, https://doi.org/10.5194/amt-17-1333-2024, 2024
Short summary
Short summary
Methane emissions can be identified using remote sensing, but surface-related structures disturb detection. In this work, a variation of the matched filter method that exploits a large fraction of the near-infrared range (1000–2500 nm) is applied. In comparison to the raw matched filter, it reduces background noise and strongly attenuates the surface-related artifacts, which leads to a greater detection capability. We propose this variation as a standard methodology for methane detection.
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024, https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
Short summary
We developed a method to estimate CO2 emissions from localized sources, such as power plants, using satellite data and applied it to estimate CO2 emissions from the Bełchatów Power Station (Poland). As the detection of CO2 emission plumes from satellite data is difficult, we used observations of co-emitted NO2 to constrain the emission plume region. Our results agree with CO2 emission estimations based on the power-plant-generated power and emission factors.
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024, https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Short summary
Carbon dioxide and methane are greenhouse gases that have been rapidly increasing due to human activity since the industrial revolution, leading to global warming and subsequently negative affects on the climate. It is important to measure the concentrations of these gases in order to make climate predictions that drive policy changes to mitigate climate change. GeoCarb aims to measure the concentrations of these gases from space over the Americas at unprecedented spatial and temporal scales.
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
Yiguo Pang, Longfei Tian, Denghui Hu, Shuang Gao, and Guohua Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1693, https://doi.org/10.5194/egusphere-2023-1693, 2023
Short summary
Short summary
The spatial adjacency of methane point sources can result in plume overlapping, presenting challenges for the quantification from space. A modern parameter estimation technique is introduced to separate the overlapping plumes from satellite observations. This separation method allows traditional quantification methods to be applied beyond scenarios with a single source. A new optimization metric is also proposed for better separation of relatively weaker sources.
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality-filtered data. We propose a nonlinear method that improves correction against a set of ground truth proxies and allows for high throughput of well-corrected data.
Cited articles
Anderson, J. G., Brune, W. H., Lloyd, S. A., Toohey, D. W., Sander, S. P., Starr, W. L., Loewenstein, M., and Podolske, J. R.: Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex: an analysis based on in situ ER-2 data, J. Geophys. Res., 94, 11480–11520, https://doi.org/10.1029/JD094iD09p11480, 1989.
Brinckmann, S., Engel, A., Bönisch, H., Quack, B., and Atlas, E.: Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer, Atmos. Chem. Phys., 12, 1213–1228, https://doi.org/10.5194/acp-12-1213-2012, 2012.
Brion, J., Chakir, A., Daumont, D., Malicet, J., and Parisse, C.: High-resolution laboratory absorption cross section of O3, temperature effect, Chem. Phys. Lett., 213, 610–612, 1993.
Brohede, S., McLinden, C. A., Berthet, G., Haley, C. S., Murtagh, D., and Sioris, C. E.: A stratospheric NO2 climatology from Odin/OSIRIS limb-scatter measurements, Can. J. Phys., 85, 1253–1274, https://doi.org/10.1139/p07-141, 2007.
Carpenter, L. J. and Liss, P. S.: On temperate sources of bromoform and other reactive organic bromine gases, J. Geophys. Res., 105, 20539–20547, https://doi.org/10.1029/2000jd900242, 2000.
Caspar, C. and Chance, K.: GOME wavelength calibration using solar and atmospheric spectra, in: Proc. Third ERS Symposium on Space at the Service of our Environment, ESA SP-414, 3, 609–614, Florence, Italy, 17–21 March, 1997.
Chance, K.: Analysis of BrO measurements from the global ozone monitoring experiment, Geophys. Res. Lett., 25, 3335–3338, https://doi.org/10.1029/98gl52359, 1998.
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295, 2010.
Chance, K. V. and Spurr, R. J. D.: Ring effect studies: rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36, 5224–5230, 1997.
Chance, K., Kurosu, T. P., and Sioris, C. E.: Undersampling correction for array detector-based satellite spectrometers, Appl. Opt., 44, 1296–1304, 2005.
Choi, S., Wang, Y., Salawitch, R. J., Canty, T., Joiner, J., Zeng, T., Kurosu, T. P., Chance, K., Richter, A., Huey, L. G., Liao, J., Neuman, J. A., Nowak, J. B., Dibb, J. E., Weinheimer, A. J., Diskin, G., Ryerson, T. B., da Silva, A., Curry, J., Kinnison, D., Tilmes, S., and Levelt, P. F.: Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255–1285, https://doi.org/10.5194/acp-12-1255-2012, 2012.
Daumont, D., Brion, J., Charbonnier, J., and Malicet, J.: Ozone UV spectroscopy I: absorption cross-sections at room temperature, J. Atmos. Chem., 15, 145–155, https://doi.org/10.1007/bf00053756, 1992.
De Smedt, I., Van Roozendael, M., and Jacobs, T.: Optimization of DOAS settings for BrO fitting from SCIAMACHY nadir spectra – comparison with GOME BrO retrievals, Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium, available at: http://bro.aeronomie.be/BIRA_SCIABrO.pdf (last access: 27 October 2012), 2004.
Dorf, M., Bösch, H., Butz, A., Camy-Peyret, C., Chipperfield, M. P., Engel, A., Goutail, F., Grunow, K., Hendrick, F., Hrechanyy, S., Naujokat, B., Pommereau, J.-P., Van Roozendael, M., Sioris, C., Stroh, F., Weidner, F., and Pfeilsticker, K.: Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles, Atmos. Chem. Phys., 6, 2483–2501, https://doi.org/10.5194/acp-6-2483-2006, 2006.
Dudhia, A., Jay, V. L., and Rodgers, C. D.: microwindow selection for high-spectral-resolution sounders, Appl. Opt., 41, 3665–3673, 2002.
Eriksson, P. and Chen, D.: Statistical parameters derived from ozonesonde data of importance for passive remote sensing observations of ozone, Int. J. Remote Sens., 23, 4945–4963, 2002.
Fleischmann, O. C., Hartmann, M., Burrows, J. P., and Orphal, J.: New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy, J. Photoch. Photobio. A, 168, 117–132, 2004.
Frieler, K., Rex, M., Salawitch, R. J., Canty, T., Streibel, M., Stimpfle, R. M., Pfeilsticker, K., Dorf, M., Weisenstein, D. K., and Godin-Beekmann, S.: Toward a better quantitative understanding of polar stratospheric ozone loss, Geophys. Res. Lett., 33, L10812, https://doi.org/10.1029/2005gl025466, 2006.
Gao, R. S., Fahey, D. W., Salawitch, R. J., Lloyd, S. A., Anderson, D. E., DeMajistre, R., McElroy, C. T., Woodbridge, E. L., Wamsley, R. C., Donnelly, S. G., Del Negro, L. A., Proffitt, M. H., Stimpfle, R. M., Kohn, D. W., Kawa, S. R., Lait, L. R., Loewenstein, M., Podolske, J. R., Keim, E. R., Dye, J. E., Wilson, J. C., and Chan, K. R.: Partitioning of the reactive nitrogen reservoir in the lower stratosphere of the southern hemisphere: observations and modeling, J. Geophys. Res., 102, 3935–3949, https://doi.org/10.1029/96jd01967, 1997.
Garcia, R. R. and Solomon, S.: A new numerical model of the middle atmosphere 2. Ozone and related species, J. Geophys. Res., 99, 12937–12951, https://doi.org/10.1029/94jd00725, 1994.
Gottwald, M., Bovensmann, H., Lichtenberg, G., Noel, S., von Bargen, A., Slijkhuis, S., Piters, A., Hoogeveen, R., von Savigny, C., Buchwitz, M., Kokhanovsky, A., Richter, A., Rozanov, A., Holzer-Popp, T., Bramstedt, K., Lambert, J.-C., Skupin, J., Wittrock, F., Schrijver, H., and Burrows, J. P.: SCIAMACHY, Monitoring the Changing Earth's Atmosphere, DLR, Springer, Heidelberg, https://doi.org/10.1007/978-90-481-9896-2, 2011.
Haley, C. S., Brohede, S. M., Sioris, C. E., Griffioen, E., Murtagh, D. P., McDade, I. C., Eriksson, P., Llewellyn, E. J., Bazureau, A., and Goutail, F.: Retrieval of stratospheric O3 and NO2 profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements, J. Geophys. Res., 109, D16303, https://doi.org/10.1029/2004jd004588, 2004.
Hendrick, F., Johnston, P. V., De Mazière, M., Fayt, C., Hermans, C., Kreher, K., Theys, N., Thomas, A., and Van Roozendael, M.: One-decade trend analysis of stratospheric BrO over Harestua (60° N) and Lauder (45° S) reveals a decline, Geophys. Res. Lett., 35, L14801, https://doi.org/10.1029/2008gl034154, 2008.
Hossaini, R., Chipperfield, M. P., Feng, W., Breider, T. J., Atlas, E., Montzka, S. A., Miller, B. R., Moore, F., and Elkins, J.: The contribution of natural and anthropogenic very short-lived species to stratospheric bromine, Atmos. Chem. Phys., 12, 371–380, https://doi.org/10.5194/acp-12-371-2012, 2012.
Kaiser, J. W.: Atmospheric parameter retrieval from UV-vis-NIR limb scattering measurements, PhD thesis, Univ. of Bremen, Bremen, Germany, 228 pp., 2001.
Kovalenko, L. J., Livesey, N. L., Salawitch, R. J., Camy-Peyret, C., Chipperfield, M. P., Cofield, R. E., Dorf, M., Drouin, B. J., Froidevaux, L., Fuller, R. A., Goutail, F., Jarnot, R. F., Jucks, K., Knosp, B. W., Lambert, A., MacKenzie, I. A., Pfeilsticker, K., Pommereau, J. P., Read, W. G., Santee, M. L., Schwartz, M. J., Snyder, W. V., Stachnik, R., Stek, P. C., Wagner, P. A., and Waters, J. W.: Validation of aura microwave limb sounder BrO observations in the stratosphere, J. Geophys. Res., 112, D24S41, https://doi.org/10.1029/2007jd008817, 2007.
Kühl, S., Pukite, J., Deutschmann, T., Platt, U., and Wagner, T.: SCIAMACHY limb measurements of NO2, BrO and OCl O. Retrieval of vertical profiles: algorithm, first results, sensitivity and comparison studies, Adv. Space Res., 42, 1747–1764, 2008.
Laube, J. C., Engel, A., Bönisch, H., Möbius, T., Worton, D. R., Sturges, W. T., Grunow, K., and Schmidt, U.: Contribution of very short-lived organic substances to stratospheric chlorine and bromine in the tropics – a case study, Atmos. Chem. Phys., 8, 7325–7334, https://doi.org/10.5194/acp-8-7325-2008, 2008.
Lindström, P. and Wedin, P.-Å.: Methods and Software for Nonlinear Least Squares Problems, Inst. of Information Processing, University of Umeå, Umeå, Sweden, 1988.
Liu, X., Chance, K., Sioris, C. E., and Kurosu, T. P.: Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements, Atmos. Chem. Phys., 7, 3571–3578, https://doi.org/10.5194/acp-7-3571-2007, 2007.
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., and Brion, J.: Ozone UV spectroscopy, II. absorption cross-sections and temperature dependence, J. Atmos. Chem., 21, 263–273, https://doi.org/10.1007/bf00696758, 1995.
McCormick, M. P., Wang, P. H., and Pitts, M. C.: Background stratospheric aerosol and polar stratospheric cloud reference models, Adv. Space Res., 18, 155–177, 1996.
McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and Sundet, J.: Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux, J. Geophys. Res., 105, 14653–14665, 2000.
McLinden, C. A., McConnell, J. C., Griffioen, E., and McElroy, C. T.: A vector radiative-transfer model for the Odin/OSIRIS project, Can. J. Phys., 80, 375–393, https://doi.org/10.1139/p01-156, 2002.
McLinden, C. A., Haley, C. S., and Sioris, C. E.: Diurnal effects in limb scatter observations, J. Geophys. Res., 111, D14302, https://doi.org/10.1029/2005jd006628, 2006.
McLinden, C. A., Haley, C. S., Lloyd, N. D., Hendrick, F., Rozanov, A., Sinnhuber, B. M., Goutail, F., Degenstein, D. A., Llewellyn, E. J., Sioris, C. E., Van Roozendael, M., Pommereau, J. P., Lotz, W., and Burrows, J. P.: Odin/OSIRIS observations of stratospheric BrO: retrieval methodology, climatology, and inferred bry, J. Geophys. Res., 115, D15308, https://doi.org/10.1029/2009jd012488, 2010.
McPeters, R. D., Labow, G. J., and Logan, J. A.: Ozone climatological profiles for satellite retrieval algorithms, J. Geophys. Res., 112, D05308, https://doi.org/10.1029/2005jd006823, 2007.
Montzka, S. A., Reimann, S. (Coordinating Lead Authors), Engel, A., Krüger, K., O'Doherty, S., Sturges, W. T., Blake, D. R., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K. W., Kreher, K., Kurylo, M. J., Mellouki, A., Miller, J., Nielsen, O.-J., Orkin, V. L., Prinn, R. G., Rhew, R., Santee, M. L., Stohl, A., and Verdonik, D.: Ozone-Depleting Substances (OESs) and Related Chemicals, World Meteorological Organization, Geneva, Switzerland, 516 pp., 2011.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy: Principles and Applications, Springer Verlag, Heidelberg, Germany, 2008.
Prather, M.: Catastrophic loss of stratospheric ozone in dense volcanic clouds, J. Geophys. Res., 97, 10187–10191, https://doi.org/10.1029/92jd00845, 1992.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, 1st Edn., World Sci., River Edge, N.J., 2000.
Rozanov, A., Bovensmann, H., Bracher, A., Hrechanyy, S., Rozanov, V., Sinnhuber, M., Stroh, F., and Burrows, J. P.: NO2 and BrO vertical profile retrieval from SCIAMACHY limb measurements: sensitivity studies, Adv. Space Res., 36, 846–854, 2005.
Rozanov, A., Kühl, S., Doicu, A., McLinden, C., Puķīte, J., Bovensmann, H., Burrows, J. P., Deutschmann, T., Dorf, M., Goutail, F., Grunow, K., Hendrick, F., von Hobe, M., Hrechanyy, S., Lichtenberg, G., Pfeilsticker, K., Pommereau, J. P., Van Roozendael, M., Stroh, F., and Wagner, T.: BrO vertical distributions from SCIAMACHY limb measurements: comparison of algorithms and retrieval results, Atmos. Meas. Tech., 4, 1319–1359, https://doi.org/10.5194/amt-4-1319-2011, 2011.
Salawitch, R. J., Wofsy, S. C., Gottlieb, E. W., Lait, L. R., Newman, P. A., Schoeberl, M. R., Loewenstein, M., Podolske, J. R., Strahan, S. E., Proffitt, M. H., Webster, C. R., May, R. D., Fahey, D. W., Baumgardner, D., Dye, J. E., Wilson, J. C., Kelly, K. K., Elkins, J. W., Chan, K. R., and Anderson, J. G.: Chemical loss of ozone in the Arctic Polar Vortex in the winter of 1991–1992, Science, 261, 1146–1149, 1993.
Salawitch, R. J., Weisenstein, D. K., Kovalenko, L. J., Sioris, C. E., Wennberg, P. O., Chance, K., Ko, M. K. W., and McLinden, C. A.: Sensitivity of ozone to bromine in the lower stratosphere, Geophys. Res. Lett., 32, L05811, https://doi.org/10.1029/2004gl021504, 2005.
Salawitch, R. J., Canty, T., Kurosu, T., Chance, K., Liang, Q., da Silva, A., Pawson, S., Nielsen, J. E., Rodriguez, J. M., Bhartia, P. K., Liu, X., Huey, L. G., Liao, J., Stickel, R. E., Tanner, D. J., Dibb, J. E., Simpson, W. R., Donohoue, D., Weinheimer, A., Flocke, F., Knapp, D., Montzka, D., Neuman, J. A., Nowak, J. B., Ryerson, T. B., Oltmans, S., Blake, D. R., Atlas, E. L., Kinnison, D. E., Tilmes, S., Pan, L. L., Hendrick, F., Van Roozendael, M., Kreher, K., Johnston, P. V., Gao, R. S., Johnson, B., Bui, T. P., Chen, G., Pierce, R. B., Crawford, J. H., and Jacob, D. J.: A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, https://doi.org/10.1029/2010gl043798, 2010.
Sinnhuber, B. M., Rozanov, A., Sheode, N., Afe, O. T., Richter, A., Sinnhuber, M., Wittrock, F., Burrows, J. P., Stiller, G. P., von Clarmann, T., and Linden, A.: Global observations of stratospheric bromine monoxide from SCIAMACHY, Geophys. Res. Lett., 32, L20810, https://doi.org/10.1029/2005gl023839, 2005.
Sioris, C. E., Kovalenko, L. J., McLinden, C. A., Salawitch, R. J., Van Roozendael, M., Goutail, F., Dorf, M., Pfeilsticker, K., Chance, K., von Savigny, C., Liu, X., Kurosu, T. P., Pommereau, J. P., Bösch, H., and Frerick, J.: Latitudinal and vertical distribution of bromine monoxide in the lower stratosphere from scanning imaging absorption spectrometer for atmospheric chartography limb scattering measurements, J. Geophys. Res., 111, D14301, https://doi.org/10.1029/2005jd006479, 2006.
Sofieva, V., Tamminen, J., Kyrölä, E., Team, G. C. A. L. V. A. L., Foelsche, U., Kirchengast, G., and Steiner, A.: Modeling errors of GOMOS measurements: a sensitivity study, in: Atmosphere and Climate, Springer, Berlin, 67–78, 2006.
Tarpley, D.: NMC Upper Air Derived Data (FIFE), Data set, in: Collected Data of the First ISLSCP Field Experiment, Vol. 1: Surface Observations and Non-Image Data Sets, edited by: Strebel, D. E., Landis, D. R., Huemmrich, K. F., and Meeson, B. W., https://doi.org/10.3334/ORNLDAAC/57, 1994.
Theys, N., Van Roozendael, M., Hendrick, F., Yang, X., De Smedt, I., Richter, A., Begoin, M., Errera, Q., Johnston, P. V., Kreher, K., and De Mazière, M.: Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791–1811, https://doi.org/10.5194/acp-11-1791-2011, 2011.
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Mérienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of the NO2 absorption cross-section from 42 000 cm^-1} to 10 000 \unit{cm-1 (238–1000 nm) at 220 K and 294 K, J. Quant. Spectrosc. Ra., 59, 171–184, 1998.
von Savigny, C., Ulasi, E. P., Eichmann, K.-U., Bovensmann, H., and Burrows, J. P.: Detection and mapping of polar stratospheric clouds using limb scattering observations, Atmos. Chem. Phys., 5, 3071–3079, https://doi.org/10.5194/acp-5-3071-2005, 2005.
Wamsley, P. R., Elkins, J. W., Fahey, D. W., Dutton, G. S., Volk, C. M., Myers, R. C., Montzka, S. A., Butler, J. H., Clarke, A. D., Fraser, P. J., Steele, L. P., Lucarelli, M. P., Atlas, E. L., Schauffler, S. M., Blake, D. R., Rowland, F. S., Sturges, W. T., Lee, J. M., Penkett, S. A., Engel, A., Stimpfle, R. M., Chan, K. R., Weisenstein, D. K., Ko, M. K. W., and Salawitch, R. J.: Distribution of halon-1211 in the upper troposphere and lower stratosphere and the 1994 total bromine budget, J. Geophys. Res., 103, 1513–1526, https://doi.org/10.1029/97jd02466, 1998.
Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch, R. J., Fahey, D. W., Woodbridge, E. L., Keim, E. R., Gao, R. S., Webster, C. R., May, R. D., Toohey, D. W., Avallone, L. M., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Chan, K. R., and Wofsy, S. C.: Removal of Stratospheric O3 by Radicals: In situ measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398–404, 1994.
Wilmouth, D. M., Hanisco, T. F., Donahue, N. M., and Anderson, J. G.: Fourier transform ultraviolet spectroscopy of the A 2Π3/2←X 2Π3/2 transition of BrO, J. Phys. Chem. A, 103, 8935–8945, https://doi.org/10.1021/jp991651o, 1999.