Articles | Volume 7, issue 6
https://doi.org/10.5194/amt-7-1777-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-7-1777-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data
Department of Physics, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
Joint Center Earth Systems & Technology (JCET), UMBC, Baltimore, MD, USA
K. Meyer
Goddard Earth Sciences Technology and Research (GESTAR), Universities Space Research Association, Columbia, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
S. Platnick
NASA Goddard Space Flight Center, Greenbelt, MD, USA
L. Oreopoulos
NASA Goddard Space Flight Center, Greenbelt, MD, USA
D. Lee
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Goddard Earth Sciences Technology and Research (GESTAR), Morgan State University, Baltimore, MD, USA
H. Yu
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Related authors
Adeleke S. Ademakinwa, Zahid H. Tushar, Jianyu Zheng, Chenxi Wang, Sanjay Purushotham, Jianwu Wang, Kerry G. Meyer, Tamas Várnai, and Zhibo Zhang
Atmos. Chem. Phys., 24, 3093–3114, https://doi.org/10.5194/acp-24-3093-2024, https://doi.org/10.5194/acp-24-3093-2024, 2024
Short summary
Short summary
Clouds play a critical role in our climate system. At present and in the near future, satellite-based remote sensing is the only means to obtain regional and global observations of cloud properties. The current satellite remote sensing algorithms are mostly based on the so-called 1D radiative transfer. This deviation from the 3D world reality can lead to large errors. In this study we investigate how this error affects our estimation of cloud radiative effects.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Justin A. Covert, David B. Mechem, and Zhibo Zhang
Atmos. Chem. Phys., 22, 1159–1174, https://doi.org/10.5194/acp-22-1159-2022, https://doi.org/10.5194/acp-22-1159-2022, 2022
Short summary
Short summary
Stratocumulus play an important role in Earth's radiative balance. The simulation of these cloud systems in climate models is difficult due to the scale at which cloud microphysical processes occur compared with model grid sizes. In this study, we use large-eddy simulation to analyze subgrid-scale variability of cloud water and its implications on a cloud water to drizzle model enhancement factor E. We find current values of E may be too large and that E should be vertically dependent in models.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021, https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Short summary
We present a satellite-derived global dust climatological record over the last two decades, including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust extinction coefficient at a 2º × 5º spatial resolution derived from CALIOP and MODIS. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697–1716, https://doi.org/10.5194/amt-12-1697-2019, https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Short summary
We present a neural network algorithm for the retrieval of cloud physical properties from multi-angle polarimetric measurements. We have trained the algorithm on a large dataset of synthetic measurements and applied it to a year of POLDER-3 data. A comparison against MODIS cloud products reveals that our algorithm is capable of performing cloud property retrievals on a global scale and possibly improves the estimates of cloud effective radius over land with respect to existing POLDER-3 products.
Zhibo Zhang, Hua Song, Po-Lun Ma, Vincent E. Larson, Minghuai Wang, Xiquan Dong, and Jianwu Wang
Atmos. Chem. Phys., 19, 1077–1096, https://doi.org/10.5194/acp-19-1077-2019, https://doi.org/10.5194/acp-19-1077-2019, 2019
Peng Wu, Baike Xi, Xiquan Dong, and Zhibo Zhang
Atmos. Chem. Phys., 18, 17405–17420, https://doi.org/10.5194/acp-18-17405-2018, https://doi.org/10.5194/acp-18-17405-2018, 2018
Short summary
Short summary
Prescribed autoconversion and accretion enhancement factors in GCM warm-rain parameterizations contribute partially to the too-frequent and too-light problem in precipitation simulation. The two factors should be regime- and resolution-dependent. A decreased autoconversion enhancement factor and increased accretion enhancement factor in the Morrison and Gettleman (2008) scheme can improve the simulated precipitation frequency and intensity. The two factors for other schemes are also suggested.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Seiji Kato, Ping Yang, Peter Colarco, Lorraine A. Remer, and Claire L. Ryder
Atmos. Chem. Phys., 18, 11303–11322, https://doi.org/10.5194/acp-18-11303-2018, https://doi.org/10.5194/acp-18-11303-2018, 2018
Short summary
Short summary
Mineral dust is the most abundant atmospheric aerosol component in terms of dry mass. In this study, we integrate recent aircraft measurements of dust microphysical and optical properties with satellite retrievals of aerosol and radiative fluxes to quantify the dust direct radiative effects on the shortwave and longwave radiation at both the top of the atmosphere and the surface in the tropical North Atlantic during summer months.
Hua Song, Zhibo Zhang, Po-Lun Ma, Steven Ghan, and Minghuai Wang
Geosci. Model Dev., 11, 3147–3158, https://doi.org/10.5194/gmd-11-3147-2018, https://doi.org/10.5194/gmd-11-3147-2018, 2018
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Heming Bai, Cheng Gong, Minghuai Wang, Zhibo Zhang, and Tristan L'Ecuyer
Atmos. Chem. Phys., 18, 1763–1783, https://doi.org/10.5194/acp-18-1763-2018, https://doi.org/10.5194/acp-18-1763-2018, 2018
Short summary
Short summary
Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol–cloud interactions and for constraining aerosol indirect effects. Here, multisensor aerosol and cloud products from A-Train satellites are analyzed to estimate precipitation susceptibility. Compared to precipitation intensity susceptibility, precipitation frequency susceptibility demonstrates relatively robust features across different retrieval products.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
Adeleke S. Ademakinwa, Zahid H. Tushar, Jianyu Zheng, Chenxi Wang, Sanjay Purushotham, Jianwu Wang, Kerry G. Meyer, Tamas Várnai, and Zhibo Zhang
Atmos. Chem. Phys., 24, 3093–3114, https://doi.org/10.5194/acp-24-3093-2024, https://doi.org/10.5194/acp-24-3093-2024, 2024
Short summary
Short summary
Clouds play a critical role in our climate system. At present and in the near future, satellite-based remote sensing is the only means to obtain regional and global observations of cloud properties. The current satellite remote sensing algorithms are mostly based on the so-called 1D radiative transfer. This deviation from the 3D world reality can lead to large errors. In this study we investigate how this error affects our estimation of cloud radiative effects.
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024, https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
Short summary
The COVID-19 lockdowns reduced aerosol emissions. We ask whether these reductions affected regional aerosol optical depth (AOD) and compare the observed changes to predictions from Earth system models. Only India has an observed AOD reduction outside of typical variability. Models overestimate the response in some regions, but when key biases have been addressed, the agreement is improved. Our results suggest that current models can realistically predict the effects of future emission changes.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Justin A. Covert, David B. Mechem, and Zhibo Zhang
Atmos. Chem. Phys., 22, 1159–1174, https://doi.org/10.5194/acp-22-1159-2022, https://doi.org/10.5194/acp-22-1159-2022, 2022
Short summary
Short summary
Stratocumulus play an important role in Earth's radiative balance. The simulation of these cloud systems in climate models is difficult due to the scale at which cloud microphysical processes occur compared with model grid sizes. In this study, we use large-eddy simulation to analyze subgrid-scale variability of cloud water and its implications on a cloud water to drizzle model enhancement factor E. We find current values of E may be too large and that E should be vertically dependent in models.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021, https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
Short summary
We present a satellite-derived global dust climatological record over the last two decades, including the monthly mean visible dust optical depth (DAOD) and vertical distribution of dust extinction coefficient at a 2º × 5º spatial resolution derived from CALIOP and MODIS. In addition, the CALIOP climatological dataset also includes dust vertical extinction profiles. Based on these two datasets, we carried out a comprehensive comparative study of the spatial and temporal climatology of dust.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
Dongmin Lee, Lazaros Oreopoulos, and Nayeong Cho
Geosci. Model Dev., 13, 673–684, https://doi.org/10.5194/gmd-13-673-2020, https://doi.org/10.5194/gmd-13-673-2020, 2020
Short summary
Short summary
We apply a cloud classification method based on cloud vertical structure (CVS) from active sensors to evaluate cloudiness in NASA’s GEOS-5 model. We assess the model CVS classes compared to observations and evaluate the simulated cloud radiative effect and its contributions. We apply an analysis framework whereby the source of the model radiative effect errors is traced back to either errors in the nature of the simulated CVS classes or in the frequency at which they are produced by the model.
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697–1716, https://doi.org/10.5194/amt-12-1697-2019, https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Short summary
We present a neural network algorithm for the retrieval of cloud physical properties from multi-angle polarimetric measurements. We have trained the algorithm on a large dataset of synthetic measurements and applied it to a year of POLDER-3 data. A comparison against MODIS cloud products reveals that our algorithm is capable of performing cloud property retrievals on a global scale and possibly improves the estimates of cloud effective radius over land with respect to existing POLDER-3 products.
Zhibo Zhang, Hua Song, Po-Lun Ma, Vincent E. Larson, Minghuai Wang, Xiquan Dong, and Jianwu Wang
Atmos. Chem. Phys., 19, 1077–1096, https://doi.org/10.5194/acp-19-1077-2019, https://doi.org/10.5194/acp-19-1077-2019, 2019
Peng Wu, Baike Xi, Xiquan Dong, and Zhibo Zhang
Atmos. Chem. Phys., 18, 17405–17420, https://doi.org/10.5194/acp-18-17405-2018, https://doi.org/10.5194/acp-18-17405-2018, 2018
Short summary
Short summary
Prescribed autoconversion and accretion enhancement factors in GCM warm-rain parameterizations contribute partially to the too-frequent and too-light problem in precipitation simulation. The two factors should be regime- and resolution-dependent. A decreased autoconversion enhancement factor and increased accretion enhancement factor in the Morrison and Gettleman (2008) scheme can improve the simulated precipitation frequency and intensity. The two factors for other schemes are also suggested.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Seiji Kato, Ping Yang, Peter Colarco, Lorraine A. Remer, and Claire L. Ryder
Atmos. Chem. Phys., 18, 11303–11322, https://doi.org/10.5194/acp-18-11303-2018, https://doi.org/10.5194/acp-18-11303-2018, 2018
Short summary
Short summary
Mineral dust is the most abundant atmospheric aerosol component in terms of dry mass. In this study, we integrate recent aircraft measurements of dust microphysical and optical properties with satellite retrievals of aerosol and radiative fluxes to quantify the dust direct radiative effects on the shortwave and longwave radiation at both the top of the atmosphere and the surface in the tropical North Atlantic during summer months.
Hua Song, Zhibo Zhang, Po-Lun Ma, Steven Ghan, and Minghuai Wang
Geosci. Model Dev., 11, 3147–3158, https://doi.org/10.5194/gmd-11-3147-2018, https://doi.org/10.5194/gmd-11-3147-2018, 2018
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Daeho Jin, Lazaros Oreopoulos, Dongmin Lee, Nayeong Cho, and Jackson Tan
Atmos. Chem. Phys., 18, 3065–3082, https://doi.org/10.5194/acp-18-3065-2018, https://doi.org/10.5194/acp-18-3065-2018, 2018
Short summary
Short summary
To what degree can precipitation be predicted given information about clouds? Or, conversely, with precipitation information at hand, can we provide good guesses about the clouds responsible? To answer these questions, we performed joint analysis of rainfall and cloud data, which are significantly decoupled. We find that only for the deepest and thickest clouds does cloud amount relate strongly with the intensity of rainfall, and that the details are different over oceans and land.
Heming Bai, Cheng Gong, Minghuai Wang, Zhibo Zhang, and Tristan L'Ecuyer
Atmos. Chem. Phys., 18, 1763–1783, https://doi.org/10.5194/acp-18-1763-2018, https://doi.org/10.5194/acp-18-1763-2018, 2018
Short summary
Short summary
Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol–cloud interactions and for constraining aerosol indirect effects. Here, multisensor aerosol and cloud products from A-Train satellites are analyzed to estimate precipitation susceptibility. Compared to precipitation intensity susceptibility, precipitation frequency susceptibility demonstrates relatively robust features across different retrieval products.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy
Geosci. Model Dev., 9, 2377–2389, https://doi.org/10.5194/gmd-9-2377-2016, https://doi.org/10.5194/gmd-9-2377-2016, 2016
Short summary
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
Souichiro Hioki, Ping Yang, Bryan A. Baum, Steven Platnick, Kerry G. Meyer, Michael D. King, and Jerome Riedi
Atmos. Chem. Phys., 16, 7545–7558, https://doi.org/10.5194/acp-16-7545-2016, https://doi.org/10.5194/acp-16-7545-2016, 2016
Short summary
Short summary
The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multi-directional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed, which provides a more noise-resilient roughness estimate than the conventional approach. A global one-month data sample shows the use and the limit of a severely roughened ice habit to simulate the polarized reflectivity.
Kerry Meyer, Yuekui Yang, and Steven Platnick
Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, https://doi.org/10.5194/amt-9-1785-2016, 2016
Short summary
Short summary
This paper presents the expected uncertainties of a single-channel cloud opacity retrieval technique and a temperature-based cloud phase approach in support of the Deep Space Climate Observatory (DSCOVR) mission; DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations. Results show that, for ice clouds, retrieval errors are minimal (< 2 %), while for liquid clouds the error is limited to within 10 %, although for thin clouds the error can be higher.
Robert E. Holz, Steven Platnick, Kerry Meyer, Mark Vaughan, Andrew Heidinger, Ping Yang, Gala Wind, Steven Dutcher, Steven Ackerman, Nandana Amarasinghe, Fredrick Nagle, and Chenxi Wang
Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, https://doi.org/10.5194/acp-16-5075-2016, 2016
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Robert E. Holz, Paolo Veglio, John Yorks, and Chenxi Wang
Atmos. Meas. Tech., 9, 1743–1753, https://doi.org/10.5194/amt-9-1743-2016, https://doi.org/10.5194/amt-9-1743-2016, 2016
Short summary
Short summary
Cirrus cloud optical and microphysical properties are retrieved from remote sensing solar reflectance measurements at two narrow wavelength channels within the broader water vapor absorption band at 1.88 µm. Results from this technique compare well with other solar reflectance, IR, and lidar-based retrievals. This approach is complementary to traditional remote sensing techniques and can extend cloud retrieval capabilities for thin cirrus clouds.
Benjamin Marchant, Steven Platnick, Kerry Meyer, G. Thomas Arnold, and Jérôme Riedi
Atmos. Meas. Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016, https://doi.org/10.5194/amt-9-1587-2016, 2016
Short summary
Short summary
The current paper presents the new MODIS Collection 6 (C6) cloud thermodynamic phase classification algorithm. To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
A. Lyapustin, Y. Wang, X. Xiong, G. Meister, S. Platnick, R. Levy, B. Franz, S. Korkin, T. Hilker, J. Tucker, F. Hall, P. Sellers, A. Wu, and A. Angal
Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, https://doi.org/10.5194/amt-7-4353-2014, 2014
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, https://doi.org/10.5194/amt-7-2839-2014, 2014
D. Lee, Y. C. Sud, L. Oreopoulos, K.-M. Kim, W. K. Lau, and I.-S. Kang
Atmos. Chem. Phys., 14, 6853–6866, https://doi.org/10.5194/acp-14-6853-2014, https://doi.org/10.5194/acp-14-6853-2014, 2014
G. Wind, A. M. da Silva, P. M. Norris, and S. Platnick
Geosci. Model Dev., 6, 2049–2062, https://doi.org/10.5194/gmd-6-2049-2013, https://doi.org/10.5194/gmd-6-2049-2013, 2013
A. Arola, T. F. Eck, J. Huttunen, K. E. J. Lehtinen, A. V. Lindfors, G. Myhre, A. Smirnov, S. N. Tripathi, and H. Yu
Atmos. Chem. Phys., 13, 7895–7901, https://doi.org/10.5194/acp-13-7895-2013, https://doi.org/10.5194/acp-13-7895-2013, 2013
P. Stier, N. A. J. Schutgens, N. Bellouin, H. Bian, O. Boucher, M. Chin, S. Ghan, N. Huneeus, S. Kinne, G. Lin, X. Ma, G. Myhre, J. E. Penner, C. A. Randles, B. Samset, M. Schulz, T. Takemura, F. Yu, H. Yu, and C. Zhou
Atmos. Chem. Phys., 13, 3245–3270, https://doi.org/10.5194/acp-13-3245-2013, https://doi.org/10.5194/acp-13-3245-2013, 2013
W. J. Collins, M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West
Atmos. Chem. Phys., 13, 2471–2485, https://doi.org/10.5194/acp-13-2471-2013, https://doi.org/10.5194/acp-13-2471-2013, 2013
C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, and P. Lu
Atmos. Chem. Phys., 13, 2347–2379, https://doi.org/10.5194/acp-13-2347-2013, https://doi.org/10.5194/acp-13-2347-2013, 2013
Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez
Geosci. Model Dev., 6, 57–79, https://doi.org/10.5194/gmd-6-57-2013, https://doi.org/10.5194/gmd-6-57-2013, 2013
L. Zhu, J. V. Martins, and H. Yu
Atmos. Meas. Tech., 5, 3055–3067, https://doi.org/10.5194/amt-5-3055-2012, https://doi.org/10.5194/amt-5-3055-2012, 2012
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations
Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements
A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust
Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy
Evaluation of calibration performance of a low-cost particulate matter sensor using collocated and distant NO2
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Multi-wavelength dataset of aerosol extinction profiles retrieved from GOMOS stellar occultation measurements
Deep-Pathfinder: a boundary layer height detection algorithm based on image segmentation
An iterative algorithm to simultaneously retrieve aerosol extinction and effective radius profiles using CALIOP
Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach
Alicenet – An Italian network of Automated Lidar-Ceilometers for 4D aerosol monitoring: infrastructure, data processing, and applications
Retrieving UV–Vis spectral single-scattering albedo of absorbing aerosols above clouds from synergy of ORACLES airborne and A-train sensors
Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra
Parameterizing spectral surface reflectance relationships for the Dark Target aerosol algorithm applied to a geostationary imager
Aerosol and cloud data processing and optical property retrieval algorithms for the spaceborne ACDL/DQ-1
Total Column Optical Depths Retrieved from CALIPSO Lidar Ocean Surface Backscatter
Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements
Retrieval of stratospheric aerosol extinction coefficients from OMPS-LP measurements
Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar
HETEAC-Flex: an optimal estimation method for aerosol typing based on lidar-derived intensive optical properties
MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm
Increasing Aerosol Optical Depth Spatial And Temporal Availability By Merging Datasets from Geostationary And Sun-Synchronous Satellites
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations
Post-process correction improves the accuracy of satellite PM2.5 retrievals
Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager
Aerosol retrieval over snow using the RemoTAP algorithm
Combined sun-photometer–lidar inversion: lessons learned during the EARLINET/ACTRIS COVID-19 campaign
Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models
Linear polarization signatures of atmospheric dust with the SolPol direct-sun polarimeter
Retrieval of aerosol properties from zenith sky radiance measurements
An ensemble method for improving the estimation of planetary boundary layer height from radiosonde data
Detection and analysis of Lhù'ààn Mân' (Kluane Lake) dust plumes using passive and active ground-based remote sensing supported by physical surface measurements
Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products
Influence of electromagnetic interference on the evaluation of lidar-derived aerosol properties from Ny-Ålesund, Svalbard
Global 3-D distribution of aerosol composition by synergistic use of CALIOP and MODIS observations
Aerosol optical depth retrieval from the EarthCARE Multi-Spectral Imager: the M-AOT product
Evaluating the effects of columnar NO2 on the accuracy of aerosol optical properties retrievals
An explicit formulation for the retrieval of the overlap function in an elastic and Raman aerosol lidar
The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products
SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC
Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia
Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data
HETEAC – the Hybrid End-To-End Aerosol Classification model for EarthCARE
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024, https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Short summary
This study explores the problems of surface reflectance estimation from previous MISR satellite remote sensing images and develops an error correction model to obtain a higher-precision aerosol optical depth (AOD) product. High-accuracy AOD is important not only for the daily monitoring of air pollution but also for the study of energy exchange between land and atmosphere. This will help further improve the retrieval accuracy of multi-angle AOD on large spatial scales and for long time series.
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024, https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
Short summary
We compare aerosol properties over the King Abdullah University of Science and Technology campus using Generalized Retrieval of Aerosol and Surface Properties (GRASP) and the Micro-Pulse Lidar Network (MPLNET). We focus on the impact of different aerosol retrieval assumptions on daytime and nighttime retrievals and analyze seasonal variability in aerosol properties, aiding in understanding aerosol behavior and improving retrieval. Our work has implications for climate and public health.
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024, https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Short summary
Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world’s first geostationary-Earth-orbit (GEO) satellite instrument designed for atmospheric environmental monitoring. This study describes improvements made to the GEMS aerosol retrieval algorithm (AERAOD) and presents its validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024, https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Short summary
Information about aerosol loading in the atmosphere can be collected from various satellite instruments. Aerosol products from various satellite instruments have their own error characteristics. This study statistically merged aerosol optical depth datasets from multiple instruments aboard geostationary satellites considering uncertainties. Also, a deep neural network technique is adopted for aerosol data merging.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Igor Veselovskii, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskii, Gaël Dubois, William Boissiere, and Nikita Kasianik
Atmos. Meas. Tech., 17, 4137–4152, https://doi.org/10.5194/amt-17-4137-2024, https://doi.org/10.5194/amt-17-4137-2024, 2024
Short summary
Short summary
The paper presents a new method that categorizes atmospheric aerosols by analyzing their optical properties with a Mie–Raman–fluorescence lidar. The research specifically looks into understanding the presence of smoke, urban, and dust aerosols in the mixtures identified by this lidar. The reliability of the results is evaluated using the Monte Carlo technique. The effectiveness of this approach is successfully demonstrated through testing in ATOLL, an observatory influenced by diverse aerosols.
Fred Prata
Atmos. Meas. Tech., 17, 3751–3764, https://doi.org/10.5194/amt-17-3751-2024, https://doi.org/10.5194/amt-17-3751-2024, 2024
Short summary
Short summary
Geostationary satellite data have been used to measure the stratospheric aerosols from the explosive Hunga volcanic eruption by using the data in a novel way. The onboard imager views part of the Earth's limb and data from this region were analysed to generate vertical cross-sections of aerosols high in the atmosphere. The analyses show the hemispheric spread of the aerosols and their vertical structure in layers from 22–28 km in the stratosphere.
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Short summary
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024, https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Short summary
This paper focuses on the use of fluorescence to study aerosols with lidar. An innovative method for aerosol hygroscopic growth study using fluorescence is presented. The paper presents case studies to showcase the effectiveness and potential of the proposed approach. These advancements will contribute to better understanding the interactions between aerosols and water vapor, with future work expected to be dedicated to aerosol–cloud interaction.
Kabseok Ko, Seokheon Cho, and Ramesh R. Rao
Atmos. Meas. Tech., 17, 3303–3322, https://doi.org/10.5194/amt-17-3303-2024, https://doi.org/10.5194/amt-17-3303-2024, 2024
Short summary
Short summary
In our study, we examined how NO2, temperature, and relative humidity influence the calibration of PurpleAir PA-II sensors. We found that incorporating NO2 data from collocated reliable instruments enhances PM2.5 calibration performance. Due to the impracticality of collocating reliable NO2 instruments with sensors, we suggest using distant NO2 data for calibration. We demonstrated that performance improves when distant NO2 correlates highly with collocated NO2 measurements.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Didier Fussen, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Alexei Rozanov, and Christine Pohl
Atmos. Meas. Tech., 17, 3085–3101, https://doi.org/10.5194/amt-17-3085-2024, https://doi.org/10.5194/amt-17-3085-2024, 2024
Short summary
Short summary
We have developed the new multi-wavelength dataset of aerosol extinction profiles, which are retrieved from the averaged transmittance spectra by the Global Ozone Monitoring by Occultation of Stars instrument aboard Envisat. The retrieved aerosol extinction profiles are provided in the altitude range 10–40 km at 400, 440, 452, 470, 500, 525, 550, 672 and 750 nm for the period 2002–2012. FMI-GOMOSaero aerosol profiles have improved quality; they are in good agreement with other datasets.
Jasper S. Wijnands, Arnoud Apituley, Diego Alves Gouveia, and Jan Willem Noteboom
Atmos. Meas. Tech., 17, 3029–3045, https://doi.org/10.5194/amt-17-3029-2024, https://doi.org/10.5194/amt-17-3029-2024, 2024
Short summary
Short summary
The mixing of air in the lower atmosphere influences the concentration of air pollutants and greenhouse gases. Our study developed a new method, Deep-Pathfinder, to estimate mixing layer height. Deep-Pathfinder analyses imagery with aerosol observations using artificial intelligence techniques for computer vision. Compared to existing methods, it improves temporal consistency and resolution and can be used in real time, which is valuable for aviation, forecasting, and air quality monitoring.
Liang Chang, Jing Li, Jingjing Ren, Changrui Xiong, and Lu Zhang
Atmos. Meas. Tech., 17, 2637–2648, https://doi.org/10.5194/amt-17-2637-2024, https://doi.org/10.5194/amt-17-2637-2024, 2024
Short summary
Short summary
We described a modified lidar inversion algorithm to retrieve aerosol extinction and size distribution simultaneously from two-wavelength elastic lidar measurements. Its major advantage is that the lidar ratio of each layer is determined iteratively by a lidar ratio–Ångström exponent lookup table. The algorithm was applied to the Raman lidar and CALIOP measurements. The retrieved results by our method are in good agreement with those achieved by Raman method.
Zihao Yuan, Guangliang Fu, Bastiaan van Diedenhoven, Hai Xiang Lin, Jan Willem Erisman, and Otto P. Hasekamp
Atmos. Meas. Tech., 17, 2595–2610, https://doi.org/10.5194/amt-17-2595-2024, https://doi.org/10.5194/amt-17-2595-2024, 2024
Short summary
Short summary
Currently, aerosol properties from spaceborne multi-angle polarimeter (MAP) instruments can only be retrieved in cloud-free areas or in areas where an aerosol layer is located above a cloud. Therefore, it is important to be able to identify cloud-free pixels for which an aerosol retrieval algorithm can provide meaningful output. The developed neural network cloud screening demonstrates that cloud masking for MAP aerosol retrieval can be based on the MAP measurements themselves.
Annachiara Bellini, Henri Diémoz, Luca Di Liberto, Gian Paolo Gobbi, Alessandro Bracci, Ferdinando Pasqualini, and Francesca Barnaba
EGUsphere, https://doi.org/10.5194/egusphere-2024-730, https://doi.org/10.5194/egusphere-2024-730, 2024
Short summary
Short summary
The work provides a comprehensive view of the configuration, retrieval algorithms, and relevant applications of the Italian network of Automated Lidar-Ceilometer, Alicenet. It describes the full Alicenet data processing converting raw instrumental data into quantitative aerosol information. It includes relevant examples of the Alicenet derived quantities and their comparison with independent data, and recent examples of the network monitoring potential over Italy.
Hiren T. Jethva, Omar Torres, Richard A. Ferrare, Sharon P. Burton, Anthony L. Cook, David B. Harper, Chris A. Hostetler, Jens Redemann, Vinay Kayetha, Samuel LeBlanc, Kristina Pistone, Logan Mitchell, and Connor J. Flynn
Atmos. Meas. Tech., 17, 2335–2366, https://doi.org/10.5194/amt-17-2335-2024, https://doi.org/10.5194/amt-17-2335-2024, 2024
Short summary
Short summary
We introduce a novel synergy algorithm applied to ORALCES airborne measurements of above-cloud aerosol optical depth and UV–Vis satellite observations from OMI and MODIS to retrieve spectral aerosol single-scattering albedo of lofted layers of carbonaceous smoke aerosols over clouds. The development of the proposed aerosol–cloud algorithm implies a possible synergy of CALIOP and OMI–MODIS passive sensors to deduce a global product of AOD and SSA of absorbing aerosols above clouds.
Travis N. Knepp, Mahesh Kovilakam, Larry Thomason, and Stephen J. Miller
Atmos. Meas. Tech., 17, 2025–2054, https://doi.org/10.5194/amt-17-2025-2024, https://doi.org/10.5194/amt-17-2025-2024, 2024
Short summary
Short summary
An algorithm is presented to derive a new SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station) Level-2 product: the size distribution of stratospheric particles. This is a significant improvement over previous techniques in that we now provide uncertainty estimates for all inferred parameters. We also evaluated the stability of this method in retrieving bimodal distribution parameters. We present a special application to the 2022 eruption of Hunga Tonga.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Guangyao Dai, Songhua Wu, Wenrui Long, Jiqiao Liu, Yuan Xie, Kangwen Sun, Fanqian Meng, Xiaoquan Song, Zhongwei Huang, and Weibiao Chen
Atmos. Meas. Tech., 17, 1879–1890, https://doi.org/10.5194/amt-17-1879-2024, https://doi.org/10.5194/amt-17-1879-2024, 2024
Short summary
Short summary
An overview is given of the main algorithms applied to derive the aerosol and cloud optical property product of the Aerosol and Carbon Detection Lidar (ACDL), which is capable of globally profiling aerosol and cloud optical properties with high accuracy. The paper demonstrates the observational capabilities of ACDL for aerosol and cloud vertical structure and global distribution through two optical property product measurement cases and global aerosol optical depth profile observations.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, and Brian J. Getzewich
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-23, https://doi.org/10.5194/amt-2024-23, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper introduces Ocean Derived Column Optical Depths (ODCOD), a new way to estimate column optical depths using the CALOP lidar measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a compliment measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established datasets in the daytime but tends to estimate higher at night.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024, https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Short summary
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-358, https://doi.org/10.5194/egusphere-2024-358, 2024
Short summary
Short summary
We developed a new algorithm to retrieve vertical distributions of the aerosol extinction coefficient in the stratosphere. The algorithm is applied to measurements of the scattered solar light form the space borne OMPS-LP (Ozone Mapping and Profiler Suite-Limb Profiler) instrument. The retrieval results are compared to the data from other space borne instruments and used to investigate the evolution of the aerosol plume after the eruption of the Hunga Tonga-Hunga Ha'apai volcano in January 2022.
Viet Le, Hannah Lobo, Ewan J. O'Connor, and Ville Vakkari
Atmos. Meas. Tech., 17, 921–941, https://doi.org/10.5194/amt-17-921-2024, https://doi.org/10.5194/amt-17-921-2024, 2024
Short summary
Short summary
This study offers a long-term overview of aerosol particle depolarization ratio at the wavelength of 1565 nm obtained from vertical profiling measurements by Halo Doppler lidars during 4 years at four different locations across Finland. Our observations support the long-term usage of Halo Doppler lidar depolarization ratio such as the detection of aerosols that may pose a safety risk for aviation. Long-range Saharan dust transport and pollen transport are also showcased here.
Athena Augusta Floutsi, Holger Baars, and Ulla Wandinger
Atmos. Meas. Tech., 17, 693–714, https://doi.org/10.5194/amt-17-693-2024, https://doi.org/10.5194/amt-17-693-2024, 2024
Short summary
Short summary
We introduce an aerosol-typing scheme (HETEAC-Flex) based on lidar-derived intensive optical properties and applicable to ground-based and spaceborne lidars. HETEAC-Flex utilizes the optimal estimation method and enables the identification of up to four different aerosol components, as well as the determination of their contribution to the aerosol mixture in terms of relative volume. The aerosol components represent common aerosol types such as dust, sea salt, smoke and pollution.
James A. Limbacher, Ralph A. Kahn, Mariel D. Friberg, Jaehwa Lee, Tyler Summers, and Hai Zhang
Atmos. Meas. Tech., 17, 471–498, https://doi.org/10.5194/amt-17-471-2024, https://doi.org/10.5194/amt-17-471-2024, 2024
Short summary
Short summary
We present the new Multi-Angle Geostationary Aerosol Retrieval Algorithm (MAGARA) that fuses observations from GOES-16 and GOES-17 to retrieve information about aerosol loading (at 10–15 min cadence) and aerosol particle properties (daily), all at pixel-level resolution. We present MAGARA results for three case studies: the 2018 California Camp Fire, the 2019 Williams Flats Fire, and the 2019 Kincade Fire. We also compare MAGARA aerosol loading and particle properties with AERONET.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-259, https://doi.org/10.5194/amt-2023-259, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 minutes. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024, https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary
Short summary
We introduce the multi-section method, a novel approach for stable extinction coefficient retrievals in horizontally scanning aerosol lidar measurements, in this study. Our method effectively removes signal–noise-induced irregular peaks and derives a reference extinction coefficient, αref, from multiple scans, resulting in a strong correlation (>0.74) with PM2.5 mass concentrations. Case studies demonstrate its utility in retrieving spatio-temporal aerosol distributions and PM2.5 concentrations.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, https://doi.org/10.5194/amt-17-359-2024, 2024
Short summary
Short summary
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2635, https://doi.org/10.5194/egusphere-2023-2635, 2024
Short summary
Short summary
This study focuses on improving the accuracy of satellite-based PM2.5 retrieval, crucial for monitoring air quality and its impact on health. It employs machine learning to correct the AOD-to-PM2.5 conversion ratio using various data sources. The approach produces high-resolution PM2.5 estimates with improved accuracy. The method is flexible and can incorporate additional training data from different sources, making it a valuable tool for air quality monitoring and epidemiological studies.
Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon
Atmos. Meas. Tech., 17, 57–71, https://doi.org/10.5194/amt-17-57-2024, https://doi.org/10.5194/amt-17-57-2024, 2024
Short summary
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
Zihan Zhang, Guangliang Fu, and Otto Hasekamp
Atmos. Meas. Tech., 16, 6051–6063, https://doi.org/10.5194/amt-16-6051-2023, https://doi.org/10.5194/amt-16-6051-2023, 2023
Short summary
Short summary
In order to conduct accurate aerosol retrieval over snow, the Remote Sensing of Trace Gases and Aerosol Products (RemoTAP) algorithm is extended with a bi-directional reflection distribution function for snow surfaces. The experiments with both synthetic and real data show that the extended RemoTAP maintains capability for snow-free pixels and has obvious advantages in accuracy and the fraction of successful retrievals for retrieval over snow, especially over surfaces with snow cover > 75 %.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria E. Cachorro, and Ángel M. de Frutos
Atmos. Meas. Tech., 16, 4423–4443, https://doi.org/10.5194/amt-16-4423-2023, https://doi.org/10.5194/amt-16-4423-2023, 2023
Short summary
Short summary
This paper shows the potential of a simple radiometer like the ZEN-R52 as a possible alternative for aerosol property retrieval in remote areas. A calibration method based on radiative transfer simulations together with an inversion methodology using the GRASP code is proposed here. The results demonstrate that this methodology is useful for the retrieval of aerosol extensive properties like aerosol optical depth (AOD) and aerosol volume concentration for total, fine and coarse modes.
Xi Chen, Ting Yang, Zifa Wang, Futing Wang, and Haibo Wang
Atmos. Meas. Tech., 16, 4289–4302, https://doi.org/10.5194/amt-16-4289-2023, https://doi.org/10.5194/amt-16-4289-2023, 2023
Short summary
Short summary
Uncertainties remain great in the planetary boundary layer height (PBLH) determination from radiosonde, especially during the transition period of different PBL regimes. We combine seven existing methods along with statistical modification on gradient-based methods. We find that the ensemble method can eliminate the overestimation of PBLH and reduce the inconsistency between individual methods. The ensemble method improves the effectiveness of PBLH determination to 62.6 %.
Seyed Ali Sayedain, Norman T. O'Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech., 16, 4115–4135, https://doi.org/10.5194/amt-16-4115-2023, https://doi.org/10.5194/amt-16-4115-2023, 2023
Short summary
Short summary
We used (columnar) ground-based remote sensing (RS) tools and surface measurements to characterize local (drainage-basin) dust plumes at a site in the Yukon. Plume height, particle size, and column-to-surface ratios enabled insights into how satellite RS could be used to analyze Arctic-wide dust transport. This helps modelers refine dust impacts in their climate change simulations. It is an important step since local dust is a key source of dust deposition on snow in the sensitive Arctic region.
Ulla Wandinger, Moritz Haarig, Holger Baars, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 4031–4052, https://doi.org/10.5194/amt-16-4031-2023, https://doi.org/10.5194/amt-16-4031-2023, 2023
Short summary
Short summary
We introduce the algorithms that have been developed to derive cloud top height and aerosol layer products from observations with the Atmospheric Lidar (ATLID) onboard the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE). The products provide information on the uppermost cloud and geometrical and optical properties of aerosol layers in an atmospheric column. They can be used individually but also serve as input for algorithms that combine observations with EarthCARE’s lidar and imager.
Tim Poguntke and Christoph Ritter
Atmos. Meas. Tech., 16, 4009–4014, https://doi.org/10.5194/amt-16-4009-2023, https://doi.org/10.5194/amt-16-4009-2023, 2023
Short summary
Short summary
In this work we analyze the impact of electromagnetic interference on an aerosol lidar. We found that aging transient recorders may produce a noise with fixed frequency that can be removed a posteriori.
Rei Kudo, Akiko Higurashi, Eiji Oikawa, Masahiro Fujikawa, Hiroshi Ishimoto, and Tomoaki Nishizawa
Atmos. Meas. Tech., 16, 3835–3863, https://doi.org/10.5194/amt-16-3835-2023, https://doi.org/10.5194/amt-16-3835-2023, 2023
Short summary
Short summary
A synergistic retrieval method of aerosol components (water-soluble, light-absorbing, dust, and sea salt particles) from CALIOP and MODIS observations was developed. The total global 3-D distributions and those for each component showed good consistency with the CALIOP and MODIS official products and previous studies. The shortwave direct radiative effects of each component at the top and bottom of the atmosphere and for the heating rate were also consistent with previous studies.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Michaël Sicard, Federico Dios, Cristina Gil-Díaz, Daniel Camilo Fortunato dos Santos Oliveira, and Francesc Rocadenbosch
Atmos. Meas. Tech., 16, 3015–3025, https://doi.org/10.5194/amt-16-3015-2023, https://doi.org/10.5194/amt-16-3015-2023, 2023
Short summary
Short summary
We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals, plus an assumed lidar ratio. We assess the influence of the lidar ratio error in the overlap function retrieval and present retrieval examples.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023, https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Short summary
The paper describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from the SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this paper will help retain more measurements, particularly in the lower stratosphere during and following a volcanic event and other processes.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Huidong Yeo, and Sang-Woo Kim
Atmos. Meas. Tech., 16, 2673–2690, https://doi.org/10.5194/amt-16-2673-2023, https://doi.org/10.5194/amt-16-2673-2023, 2023
Short summary
Short summary
Aerosol height information is important when seeking an understanding of the vertical structure of the aerosol layer and long-range transport. In this study, a geometrical aerosol top height (ATH) retrieval using a parallax of two geostationary satellites is investigated. With sufficient longitudinal separation between the two satellites, a decent ATH product could be retrieved.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Cited articles
Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M. A.: The direct radiative effect of biomass burning aerosols over southern Africa, Atmos. Chem. Phys., 5, 1999–2018, https://doi.org/10.5194/acp-5-1999-2005, 2005.
Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Bergman, J. W. and Salby, M. L.: Diurnal Variations of Cloud Cover and Their Relationship to Climatological Conditions, J. Climate, 9, 2802–2820, https://doi.org/10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2, 1996.
Chand, D., Anderson, T. L., Wood, R., Charlson, R. J., Hu, Y., Liu, Z., and Vaughan, M.: Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, https://doi.org/10.1029/2007JD009433, 2008.
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.: Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geoscience, 2(3), 181–184, https://doi.org/10.1038/ngeo437, 2009.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectr. Radiat. Trans., 91, 233–244, 2005.
Coddington, O. M., Pilewskie, P., Redemann, J., Platnick, S., Russell, P. B., Schmidt, K. S., Gore, W. J., Livingston, J., Wind, G., and Vukicevic, T.: Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing, J. Geophys. Res., 115, D10211, https://doi.org/10.1029/2009JD012829, 2010.
Costantino, L. and Bréon, F.-M.: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations, Atmos. Chem. Phys., 13, 69–88, https://doi.org/10.5194/acp-13-69-2013, 2013a.
Costantino, L. and Bréon, F.-M.: Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic, Atmos. Chem. Phys. Discuss., 13, 23295–23324, https://doi.org/10.5194/acpd-13-23295-2013, 2013b.
Devasthale, A. and Thomas, M. A.: A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data, Atmos. Chem. Phys., 11, 1143–1154, https://doi.org/10.5194/acp-11-1143-2011, 2011.
Eck, T. F., Holben, B. N., Ward, D. E., Mukelabai, M. M., Dubovik, O., Smirnov, A., Schafer, J. S., Hsu, N. C., Piketh, S. J., Queface, A., Roux, J. L., Swap, R. J., and Slutsker, I.: Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res., 108, 8477, https://doi.org/10.1029/2002JD002321, 2003.
Graaf, M., Tilstra, L. G., Wang, P., and Stammes, P.: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry, J. Geophys., 117, D07207, https://doi.org/10.1029/2011JD017160, 2012.
Hartmann, D., Holton, J., and Fu, Q.: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, Geophys. Res. Lett., 28, 1969–1972, 2001.
Haywood, J. M., Osborne, S. R., and Abel, S. J.: The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth, Q. J. Roy. Meteorol. Soci., 130, 779–800, https://doi.org/10.1256/qj.03.100, 2004.
Hu, Y., Vaughan, M., Liu, Z., Lin, B., Yang, P., Flittner, D., Hunt, B., Kuehn, R., Huang, J., Wu, D., Rodier, S., Powell, K., Trepte, C., and Winker, D.: The depolarization – attenuated backscatter relation: CALIPSO lidar measurements vs. theory, Opt. Express, 15, 5327, https://doi.org/10.1364/OE.15.005327, 2007a.
Hu, Y., Vaughan, M., Liu, Z., Powell, K., and Rodier, S.: Retrieving Optical Depths and Lidar Ratios for Transparent Layers Above Opaque Water Clouds From CALIPSO Lidar Measurements, Geosci. Remote Sens. Lett., 4, 523–526, https://doi.org/10.1109/LGRS.2007.901085, 2007b.
Hubanks, P. A., King, M. D., Platnick, S., and Pincus, R.: MODIS atmosphere L3 gridded product algorithm theoretical basis document, Algorithm Theor. Basis Doc. ATBD-MOD, 30, 2008.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Ichoku, C., Remer, L. A., Kaufman, Y. J., Levy, R., Chu, D. A., Tanré, D., and Holben, B. N.: MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000, J. Geophys. Res., 108, 8499, https://doi.org/10.1029/2002JD002366, 2003.
Jethva, H., Torres, O., Remer, L. A., and Bhartia, P. K.: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements, IEEE Trans. Geosci. Remote Sens., 51, 3862–3870, 2013.
Jethva, H., Torres, O., Waquet, F., Chand, D., and Hu, Y.: How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment, Geophys. Res. Lett., 41, 186–192, https://doi.org/10.1002/2013GL058405, 2014.
Kacenelenbogen, M., Vaughan, M. A., Redemann, J., Hoff, R. M., Rogers, R. R., Ferrare, R. A., Russell, P. B., Hostetler, C. A., Hair, J. W., and Holben, B. N.: An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study, Atmos. Chem. Phys., 11, 3981–4000, https://doi.org/10.5194/acp-11-3981-2011, 2011.
Kacenelenbogen, M., Redemann, J., Vaughan, M. A., Omar, A. H., Russell, P. B., Burton, S., Rogers, R. R., Ferrare, R. A., and Hostetler, C. A.: An evaluation of CALIOP/CALIPSO's aerosolabovecloud (AAC) detection and retrieval capability over North America, J. Geophys. Res.-Atmos., 19, 230–244, https://doi.org/10.1002/2013JD020178, 2013.
Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties, J. Geophys. Res., 108, 8467, https://doi.org/10.1029/2002JD002315, 2003.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites, IEEE Trans. Geosci. Remote Sens., 51, 3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP–NCAR 50–Year Reanalysis: Monthly Means CD–ROM and Documentation, Bull. Am. Meteorol. Soc., 82, 247–267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2, 2001.
Levy, R. C., Remer, L. A., Tanre, D., Mattoo, S., and Kaufman, Y. J.: Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2, MODIS Algorithm Theoretical Basis Document for the MOD04_L2 Product, 2009.
Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R., Omar, A., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSOLidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance, J. Atmos. Ocean. Technol., 26, 1198–1213, https://doi.org/10.1175/2009JTECHA1229.1, 2009.
Liu, Z., Winker, D. M., Omar, A. H., Vaughan, M., Kar, J., Trepte, C. R., and Hu, Y.: Evaluation of CALIOP 532-nm AOD over Clouds, AGU Fall Meeting 2013, 2013.
Menzel, P., Frey, R., Baum, B., and Zhang, H.: Cloud Top Properties and Cloud Phase Algorithm Theoretical Basis Document, 2006.
Menzel, W., Smith, W., and Stewart, T.: Improved Cloud Motion Wind Vector and Altitude Assignment Using VAS, J. Appl. Meteorol., 22, 377–384, 1983.
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP, J. Geophys. Res.-Atmos., 118, 4801–4815, https://doi.org/10.1002/jgrd.50449, 2013.
Min, M. and Zhang, Z.: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing, J. Quant. Spectr. Radiat., 142, 25–36, https://doi.org/10.1016/j.jqsrt.2014.03.014, 2014.
Myhre, G., Berntsen, T. K., Haywood, J. M., Sundet, J. K., Holben, B. N., Johnsrud, M., and Stordal, F.: Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI-2000) experiment, J. Geophys. Res., 108(D13), 8501, https://doi.org/10.1029/2002JD002313, 2003.
Nakajima, T. and King, M.: Determination of the optical thickness and effective particle radius of clouds, J. Atmos. Sci., 47, 1878–1893, 1990.
Oikawa, E., Nakajima, T., Inoue, T., and Winker, D.: A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation, J. Geophys. Res., 118, 3687–3708, https://doi.org/10.1002/jgrd.50227, 2013.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., and Rogers, R. R.: The CALIPSO automated aerosol classification and lidar ratio selection algorithm, J. Atmos. Ocean. Technol., 26, 1994–2014, 2009.
Oreopoulos, L., Cahalan, R. F., and Platnick, S.: The Plane-Parallel Albedo Bias of Liquid Clouds from MODIS Observations, J. Climate, 20, 5114–5125, https://doi.org/10.1175/JCLI4305.1, 2007.
Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi, J., and Frey, R.: The MODIS cloud products: algorithms and examples from Terra, Geosci. Remote Sens., 41, 459–473, 2003.
Rossow, W. B. and Schiffer, R. A.: Advances in Understanding Clouds from ISCCP, Bull. Am. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Rozendaal, M. A., Leovy, C. B., and Klein, S. A.: An Observational Study of Diurnal Variations of Marine Stratiform Cloud, J. Climate, 8, 1795–1809, 1995.
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-2006, 2006.
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S., Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A., Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters, E., and Zelenka, A.: Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9, 1687–1709, https://doi.org/10.5194/acp-9-1687-2009, 2009.
Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., Ghan, S., Huneeus, N., Kinne, S., Lin, G., Ma, X., Myhre, G., Penner, J. E., Randles, C. A., Samset, B., Schulz, M., Takemura, T., Yu, F., Yu, H., and Zhou, C.: Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study, Atmos. Chem. Phys., 13, 3245–3270, https://doi.org/10.5194/acp-13-3245-2013, 2013.
Torres, O., Jethva, H., and Bhartia, P. K.: Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies, 69, 1037–1053, https://doi.org/10.1175/JAS-D-11-0130.1, 2012.
Torres, O., Ahn, C., and Chen, Z.: Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, 2013.
Twomey, S.: Atmospheric aerosols, Elsevier Scientific Publishing Co., New York, NY, 1977.
Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R. E., Hunt, W. H., Getzewich, B. J., Young, S. A., Liu, Z., and McGill, M. J.: Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements, J. Atmos. Ocean. Technol., 26, 2034–2050, https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Waquet, F., Riedi, J., Labonnote, L. C., Goloub, P., Cairns, B., Deuzé, J. L., and Tanre, D.: Aerosol Remote Sensing over Clouds Using A-Train Observations, J. Atmos. Sci., 66, 2468–2480, https://doi.org/10.1175/2009JAS3026.1, 2009.
Waquet, F., Cornet, C., Deuzé, J.-L., Dubovik, O., Ducos, F., Goloub, P., Herman, M., Lapyonok, T., Labonnote, L. C., Riedi, J., Tanré, D., Thieuleux, F., and Vanbauce, C.: Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements, Atmos. Meas. Tech., 6, 991–1016, https://doi.org/10.5194/amt-6-991-2013, 2013a.
Waquet, F., Peers, F., Ducos, F., Goloub, P., Platnick, S., Riedi, J., Tanré, D. and Thieuleux, F.: Global analysis of aerosol properties above clouds, Geophys. Res. Lett., 40, 5809–5814, https://doi.org/10.1002/2013GL057482, 2013b.
Wilcox, E. M.: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol, Atmos. Chem. Phys., 10, 11769–11777, https://doi.org/10.5194/acp-10-11769-2010, 2010.
Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, 139–149, https://doi.org/10.5194/acp-12-139-2012, 2012.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol., 26, 2310–2323, 2009.
Wiscombe, W. J.: Improved Mie scattering algorithms, Appl. Optics, 19, 1505–1509, 1980.
Wood, R., Bretherton, C. S., and Hartmann, D. L.: Diurnal cycle of liquid water path over the subtropical and tropical oceans, Geophys. Res. Lett., 29, 2092, https://doi.org/10.1029/2002GL015371, 2002.
Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Oceanic Technol., 26, 1105–1119, https://doi.org/https://doi.org/10.1175/2008JTECHA1221.1, 2008.
Yu, H. and Zhang, Z.: New Directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcing, Atmos. Environ., 72, 36–40, https://doi.org/10.1016/j.atmosenv.2013.02.017, 2013.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Computing and partitioning cloud feedbacks using cloud property histograms, Part I: Cloud radiative kernels, J. Climate, 25, 3715–3735, https://doi.org/10.1175/JCLI-D-11-00248.1, 2012.
Zhang, Z.: On the sensitivity of cloud effective radius retrieval based on spectral method to bi-modal droplet size distribution: A semi-analytical model, J. Quant. Spectr. Radiat. Trans., 129, 79–88, https://doi.org/10.1016/j.jqsrt.2013.05.033, 2013.
Zhang, Z. and Platnick, S.: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands, J. Geophys. Res., 116, D20215, https://doi.org/10.1029/2011JD016216, 2011.
Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue, H.: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations, J. Geophys. Res., 117, D19208, https://doi.org/10.1029/2012JD017655, 2012.