Articles | Volume 9, issue 12
https://doi.org/10.5194/amt-9-5853-2016
https://doi.org/10.5194/amt-9-5853-2016
Research article
 | 
08 Dec 2016
Research article |  | 08 Dec 2016

A strategy for the measurement of CO2 distribution in the stratosphere

Massimo Carlotti, Bianca Maria Dinelli, Giada Innocenti, and Luca Palchetti

Related authors

Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016,https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Phosgene in the UTLS: seasonal and latitudinal variations from MIPAS observations
Massimo Valeri, Massimo Carlotti, Jean-Marie Flaud, Piera Raspollini, Marco Ridolfi, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 4655–4663, https://doi.org/10.5194/amt-9-4655-2016,https://doi.org/10.5194/amt-9-4655-2016, 2016
Short summary
MIPAS database: new HNO3 line parameters at 7.6  µm validated with MIPAS satellite measurements
Agnès Perrin, Jean-Marie Flaud, Marco Ridolfi, Jean Vander Auwera, and Massimo Carlotti
Atmos. Meas. Tech., 9, 2067–2076, https://doi.org/10.5194/amt-9-2067-2016,https://doi.org/10.5194/amt-9-2067-2016, 2016
Short summary
Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part 1: Retrieval algorithm and diagnostics of the products
P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J. J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann
Atmos. Meas. Tech., 6, 2419–2439, https://doi.org/10.5194/amt-6-2419-2013,https://doi.org/10.5194/amt-6-2419-2013, 2013

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary

Cited articles

Bianchini, G., Cortesi, U., Palchetti, L., and Pascale, E.: SAFIRE-A (spectroscopy of the atmosphere by far-infrared emission-airborne): optimized instrument configuration and new assessment of improved performance, Appl. Optics, 43, 2962–2977, https://doi.org/10.1364/AO.43.002962, 2004.
Boesch, H., Baker, D., Connor, B., Crisp, D., and Miller, C.: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission, Remote Sens., 3, 270–304, https://doi.org/10.3390/rs3020270, 2011.
Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Bremer, H., Bergamaschi, P., Körner, S., and Heimann, M.: Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set, Atmos. Chem. Phys., 5, 3313–3329, https://doi.org/10.5194/acp-5-3313-2005, 2005.
Carli, B. and Carlotti, M.: Far-Infrared and Microwave Spectroscopy of the Earth's Atmosphere, in: Spectroscopy of the Earth's Atmosphere and Interstellar Medium, edited by: Rao, K. N. and Weber, A., Academic Press, Boston, USA, 1–95, https://doi.org/10.1016/B978-0-12-580645-9.50005-8, 1992.
Download
Short summary
We introduce a strategy for the measurement of CO2 in the stratosphere. We use an orbiting limb sounder to measure both the thermal infrared (TIR) and far-infrared (FIR) atmospheric emissions. The rotational transitions of O2 in the FIR are exploited to derive the temperature and pressure fields that are needed to retrieve the CO2 from its spectrum in the TIR. The proposed experiment can determine two-dimensional distributions of the CO2 with precision of 1 ppm at altitudes between 10 and 50 km.