Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 2735–2748, 2018
https://doi.org/10.5194/amt-11-2735-2018
Atmos. Meas. Tech., 11, 2735–2748, 2018
https://doi.org/10.5194/amt-11-2735-2018

Research article 08 May 2018

Research article | 08 May 2018

Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

Guangyao Dai et al.

Related authors

Inter-comparison of wind measurements in the atmospheric boundary layer with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-260,https://doi.org/10.5194/amt-2021-260, 2021
Revised manuscript accepted for AMT
Short summary
Dust transport and horizontal fluxes measurement with spaceborne lidars ALADIN, CALIOP and model reanalysis data
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-219,https://doi.org/10.5194/acp-2021-219, 2021
Revised manuscript not accepted
Short summary
Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by Lidar and Radiosonde Sounding at the Summertime in 2014
Guangyao Dai, Songhua Wu, Xiaoquan Song, and Liping Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-355,https://doi.org/10.5194/amt-2017-355, 2017
Preprint retracted
Short summary
Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique
Songhua Wu, Guangyao Dai, Xiaoquan Song, Bingyi Liu, and Liping Liu
Atmos. Meas. Tech., 9, 1399–1413, https://doi.org/10.5194/amt-9-1399-2016,https://doi.org/10.5194/amt-9-1399-2016, 2016
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021,https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary
An improved TROPOMI tropospheric NO2 research product over Europe
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021,https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
Farhan Mustafa, Lingbing Bu, Qin Wang, Na Yao, Muhammad Shahzaman, Muhammad Bilal, Rana Waqar Aslam, and Rashid Iqbal
Atmos. Meas. Tech., 14, 7277–7290, https://doi.org/10.5194/amt-14-7277-2021,https://doi.org/10.5194/amt-14-7277-2021, 2021
Short summary
Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021,https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
GFIT3: a full physics retrieval algorithm for remote sensing of greenhouse gases in the presence of aerosols
Zhao-Cheng Zeng, Vijay Natraj, Feng Xu, Sihe Chen, Fang-Ying Gong, Thomas J. Pongetti, Keeyoon Sung, Geoffrey Toon, Stanley P. Sander, and Yuk L. Yung
Atmos. Meas. Tech., 14, 6483–6507, https://doi.org/10.5194/amt-14-6483-2021,https://doi.org/10.5194/amt-14-6483-2021, 2021
Short summary

Cited articles

Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009. a
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., and Michaelis, W.: Tropospheric water vapor measurement by Raman lidar: atmospheric extinction correction, in: Proceedings of Fifteenth International Laser Radar Conference (part 1), Tomsk, USSR: Institute of Atmospheric Optics, 256–259, 1990. a
Ansmann, A., Riebesell, M. A., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, App. Phys., 55, 18–28, https://doi.org/10.1007/BF00348608, 1992. a, b
Barreto, A., Cuevas, E., Damiri, B., Romero, P. M., and Almansa, F.: Column water vapor determination in night period with a lunar photometer prototype, Atmos. Meas. Tech., 6, 2159–2167, https://doi.org/10.5194/amt-6-2159-2013, 2013. a, b
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K., Onvlee, J., Rontu, L., Samuelsson, P., Santos-Munoz, D., Subias, A., Tijm, S., Toll, V., Yang, X., and Koltzow, M.: The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Download
Short summary
The presented calibration method grants access to quality approved automated atmospheric water vapor profiles from lidar measurements. This method uses the Raman lidar data from the water vapor and nitrogen channels and additional data from sun photometer and GDAS. The retrieved water vapor profiles agree well with respective profiles from radio soundings. The paper describes this method and shows results from the CyCARE (Cyprus Cloud Aerosol and Rain Experiment) campaign in 2015–2017.