Articles | Volume 12, issue 5
https://doi.org/10.5194/amt-12-2595-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-2595-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India
Department of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Elina Giannakaki
Department of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
Finnish Meteorological Institute, Kuopio, Finland
Aggeliki Dandou
Department of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
Maria Tombrou
Department of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, Athens, Greece
Mika Komppula
Finnish Meteorological Institute, Kuopio, Finland
Related authors
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1945, https://doi.org/10.5194/egusphere-2023-1945, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range transported smoke plumes were monitored with a space-borne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo-Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athina A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-76, https://doi.org/10.5194/amt-2023-76, 2023
Revised manuscript under review for AMT
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements, and derive the aerosols from antrhopogenic activities over Europe.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
Petri Tiitta, Ari Leskinen, Ville A. Kaikkonen, Eero O. Molkoselkä, Anssi J. Mäkynen, Jorma Joutsensaari, Silvia Calderon, Sami Romakkaniemi, and Mika Komppula
Atmos. Meas. Tech., 15, 2993–3009, https://doi.org/10.5194/amt-15-2993-2022, https://doi.org/10.5194/amt-15-2993-2022, 2022
Short summary
Short summary
The novel holographic imaging instrument (ICEMET) was adapted to measure the microphysical properties of liquid clouds, and these values were compared with parallel measurements of a cloud droplet spectrometer (FM-120) and particle measurements using a twin-inlet system. When the intercomparison was carried out during isoaxial sampling, our results showed good agreement in terms of variability between the instruments. This agreement was confirmed using Mutual and Pearson correlation analyses.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Jutta Kesti, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, Maria Filioglou, Mika Komppula, Hannele Korhonen, and Heikki Lihavainen
Atmos. Chem. Phys., 22, 481–503, https://doi.org/10.5194/acp-22-481-2022, https://doi.org/10.5194/acp-22-481-2022, 2022
Short summary
Short summary
In this study we combined aerosol particle measurements at the surface with a scanning Doppler lidar providing vertical profiles of the atmosphere to study the effect of different boundary layer conditions on aerosol particle properties in the understudied Arabian Peninsula region. The instrumentation used in this study enabled us to identify periods when pollution from remote sources was mixed down to the surface and initiated new particle formation in the growing boundary layer.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Xiaoxia Shang, Elina Giannakaki, Stephanie Bohlmann, Maria Filioglou, Annika Saarto, Antti Ruuskanen, Ari Leskinen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 15323–15339, https://doi.org/10.5194/acp-20-15323-2020, https://doi.org/10.5194/acp-20-15323-2020, 2020
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at a rural forest site in Kuopio, Finland. The depolarization ratio was enhanced when there were pollen grains in the atmosphere, illustrating the potential of lidar to track pollen grains in the atmosphere. The depolarization ratio of pure pollen particles was assessed for birch and pine pollen using a novel algorithm.
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020, https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Short summary
We intercompared three cloud spectrometers ground setups in conditions with frequently occurring supercooled clouds. The measurements were conducted during the Pallas Cloud Experiment (PaCE) in 2013, in the Finnish sub-Arctic region at Sammaltunturi station. The main meteorological parameters influencing the spectrometers' performance was the wind direction. Final recommendations and our view on the main limitations of each spectrometer ground setup are presented.
Maria Filioglou, Elina Giannakaki, John Backman, Jutta Kesti, Anne Hirsikko, Ronny Engelmann, Ewan O'Connor, Jari T. T. Leskinen, Xiaoxia Shang, Hannele Korhonen, Heikki Lihavainen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020, https://doi.org/10.5194/acp-20-8909-2020, 2020
Short summary
Short summary
Dust optical properties are region-dependent. Saharan, Asian, and Arabian dusts do not pose similar optical properties in terms of lidar ratios; thus, a universal lidar ratio for dust particles will lead to biases. The present study analyses observations over the United Arab Emirates, quantifying the optical and geometrical extents of the aerosol layers in the area, providing at the same time the Arabian dust properties along with chemical analysis of dust samples collected in the region.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Robert Lindgren, Christina Andersen, Ricardo Luis Carvalho, Vilhelm Malmborg, Axel Eriksson, Christoffer Boman, Joakim Pagels, Birgitta Svenningsson, Mika Komppula, Kari E. J. Lehtinen, and Annele Virtanen
Atmos. Chem. Phys., 20, 4951–4968, https://doi.org/10.5194/acp-20-4951-2020, https://doi.org/10.5194/acp-20-4951-2020, 2020
Short summary
Short summary
Ice-nucleating abilities of particulate emissions from solid-fuel-burning cookstoves were studied using a portable ice nuclei counter in an extensive laboratory experiment campaign. We found that even small changes in combustion conditions may affect the ice-nucleating ability of the emissions significantly. Also six different physico-chemical properties of the emissions were studied, but no clear correlation to their ice-nucleating ability was found.
Kalliopi Artemis Voudouri, Elina Giannakaki, Mika Komppula, and Dimitris Balis
Atmos. Chem. Phys., 20, 4427–4444, https://doi.org/10.5194/acp-20-4427-2020, https://doi.org/10.5194/acp-20-4427-2020, 2020
Short summary
Short summary
In this paper we present the variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. The kind of information presented here can be rather useful in the cirrus parameterisations required as input to radiative transfer models and can be a complementary tool for satellite products that cannot provide cloud vertical structure.
Elina Giannakaki, Panos Kokkalis, Eleni Marinou, Nikolaos S. Bartsotas, Vassilis Amiridis, Albert Ansmann, and Mika Komppula
Atmos. Meas. Tech., 13, 893–905, https://doi.org/10.5194/amt-13-893-2020, https://doi.org/10.5194/amt-13-893-2020, 2020
Short summary
Short summary
A new method, called ElEx, is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. Comparisons with both Raman lidar profiles during nightime and sun photometer daytime aerosol optical depth observations demonstrate the potential of the ElEx methodology.
Stephanie Bohlmann, Xiaoxia Shang, Elina Giannakaki, Maria Filioglou, Annika Saarto, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 19, 14559–14569, https://doi.org/10.5194/acp-19-14559-2019, https://doi.org/10.5194/acp-19-14559-2019, 2019
Short summary
Short summary
Measurements of the multiwavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at the rural forest site in Vehmasmäki, Finland. High particle depolarization ratios were observed during an intense pollination event of birch pollen occasionally mixed with spruce pollen. Our observations illustrate the potential of the particle depolarization ratio to track pollen grains in the atmosphere.
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019, https://doi.org/10.5194/amt-12-3673-2019, 2019
Short summary
Short summary
This article presents the updated MAPIR algorithm, which uses infrared satellite data to obtain the global 3-D distribution of mineral aerosols. A description of the method together with its technical improvements is given. Additionally, a 10-year data set was generated and used to evaluate this new algorithm against AERONET, CALIOP, CATS and two ground-based lidar stations. We have shown that the new MAPIR algorithm provides reliable aerosol optical depth and dust layer mean altitude profiles.
Nikolaos Siomos, Dimitris S. Balis, Kalliopi A. Voudouri, Eleni Giannakaki, Maria Filioglou, Vassilis Amiridis, Alexandros Papayannis, and Konstantinos Fragkos
Atmos. Chem. Phys., 18, 11885–11903, https://doi.org/10.5194/acp-18-11885-2018, https://doi.org/10.5194/acp-18-11885-2018, 2018
Short summary
Short summary
In this study we investigate the climatological behavior of the aerosol optical properties over Thessaloniki during the years 2003–2017. For this purpose, measurements from two individual networks, the European Lidar Aerosol Network (EARLINET) and the Aerosol Robotic Network (AERONET), were deployed. The analysis implies that the EARLINET sampling schedule can be quite effective in producing data that can be applied to
climatological studies.
Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 17, 13361–13371, https://doi.org/10.5194/acp-17-13361-2017, https://doi.org/10.5194/acp-17-13361-2017, 2017
Short summary
Short summary
Extrapolation of the particle formation rates from one measured larger size (e.g., 7 nm) to smaller sizes (e.g., 3 nm) based on simplified growth-scavenging dynamics works fairly well to estimate mean daily formation rates, but it fails to predict the time evolution of the particle population. This points to the challenges in predicting atmospheric nucleation rates for locations where the particle growth and loss rates are size- and time-dependent.
Maria Filioglou, Anna Nikandrova, Sami Niemelä, Holger Baars, Tero Mielonen, Ari Leskinen, David Brus, Sami Romakkaniemi, Elina Giannakaki, and Mika Komppula
Atmos. Meas. Tech., 10, 4303–4316, https://doi.org/10.5194/amt-10-4303-2017, https://doi.org/10.5194/amt-10-4303-2017, 2017
Sami Romakkaniemi, Zubair Maalick, Antti Hellsten, Antti Ruuskanen, Olli Väisänen, Irshad Ahmad, Juha Tonttila, Santtu Mikkonen, Mika Komppula, and Thomas Kühn
Atmos. Chem. Phys., 17, 7955–7964, https://doi.org/10.5194/acp-17-7955-2017, https://doi.org/10.5194/acp-17-7955-2017, 2017
Short summary
Short summary
Surface topography affects aerosol–cloud interactions in boundary layer clouds. Local topography effects should be screened out from in situ observations before results can be generalised into a larger scale. Here we present modelling and observational results from a measurement station residing in a 75 m tower on top of a 150 m hill, and analyse how landscape affects the cloud formation, and which factors should be taken into account when aerosol effect on cloud droplet formation is studied.
Nikolaos Siomos, Dimitris S. Balis, Anastasia Poupkou, Natalia Liora, Spyridon Dimopoulos, Dimitris Melas, Eleni Giannakaki, Maria Filioglou, Sara Basart, and Anatoli Chaikovsky
Atmos. Chem. Phys., 17, 7003–7023, https://doi.org/10.5194/acp-17-7003-2017, https://doi.org/10.5194/acp-17-7003-2017, 2017
Short summary
Short summary
This study presents an evaluation of an air quality model using aerosol measurements from radiometric and lidar data at Thessaloniki, Greece. The aerosol mass concentration profiles of CAMx are compared against the fine and coarse mode aerosol concentration profiles retrieved by the Lidar-Radiometer Inversion Code (LIRIC). The CAMx model and the LIRIC algorithm results were compared in terms of mean mass concentration profiles, center of mass and integrated mass concentration.
Panayiotis Kalkavouras, Elissavet Bossioli, Spiros Bezantakos, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Giorgos Kouvarakis, Anna P. Protonotariou, Aggeliki Dandou, George Biskos, Nikolaos Mihalopoulos, Athanasios Nenes, and Maria Tombrou
Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, https://doi.org/10.5194/acp-17-175-2017, 2017
Short summary
Short summary
Concentrations of chemically and size-resolved submicron aerosol particles along with concentrations of gases and meteorological variables were measured at Santorini and Finokalia (central and southern Aegean Sea) during the Etesians. Particle nucleation bursts were recorded. The NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number by 12 %.
Petri Tiitta, Ari Leskinen, Liqing Hao, Pasi Yli-Pirilä, Miika Kortelainen, Julija Grigonyte, Jarkko Tissari, Heikki Lamberg, Anni Hartikainen, Kari Kuuspalo, Aki-Matti Kortelainen, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, Simone Pieber, André S. H. Prévôt, Timothy B. Onasch, Douglas R. Worsnop, Hendryk Czech, Ralf Zimmermann, Jorma Jokiniemi, and Olli Sippula
Atmos. Chem. Phys., 16, 13251–13269, https://doi.org/10.5194/acp-16-13251-2016, https://doi.org/10.5194/acp-16-13251-2016, 2016
Short summary
Short summary
Real-time measurements of OA aging and SOA formation from logwood combustion were conducted under dark and UV oxidation. Substantial SOA formation was observed in all experiments, leading to twice the initial OA mass emphasizing the importance of the burning conditions for the aging processes. The results prove that emissions are subject to intensive chemical processing in the atmosphere; e.g. the most of the POA was found to become oxidized after the ozone addition, forming aged POA.
Olli Väisänen, Antti Ruuskanen, Arttu Ylisirniö, Pasi Miettinen, Harri Portin, Liqing Hao, Ari Leskinen, Mika Komppula, Sami Romakkaniemi, Kari E. J. Lehtinen, and Annele Virtanen
Atmos. Chem. Phys., 16, 10385–10398, https://doi.org/10.5194/acp-16-10385-2016, https://doi.org/10.5194/acp-16-10385-2016, 2016
Short summary
Short summary
In-cloud measurements of aerosol hygroscopicity and cloud droplet activation were conducted in Kuopio, Finland. According to the observations, the less hygroscopic accumulation mode particles were present in the non-activated aerosol, whereas the more hygroscopic particles were scavenged into cloud droplets. The results illustrate the sensitivity of cloud droplet formation to varying chemical composition and highlight the need for proper treatment of anthropogenic aerosols in CCN predictions.
Elina Giannakaki, Pieter G. van Zyl, Detlef Müller, Dimitris Balis, and Mika Komppula
Atmos. Chem. Phys., 16, 8109–8123, https://doi.org/10.5194/acp-16-8109-2016, https://doi.org/10.5194/acp-16-8109-2016, 2016
Short summary
Short summary
Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. Aerosol characterization of elevated layers was performed. This study could assist in bridging existing gaps relating to aerosol properties over South Africa.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
E. Athanasopoulou, A. P. Protonotariou, E. Bossioli, A. Dandou, M. Tombrou, J. D. Allan, H. Coe, N. Mihalopoulos, J. Kalogiros, A. Bacak, J. Sciare, and G. Biskos
Atmos. Chem. Phys., 15, 8401–8421, https://doi.org/10.5194/acp-15-8401-2015, https://doi.org/10.5194/acp-15-8401-2015, 2015
Short summary
Short summary
A model system is evaluated versus ground and airborne aerosol measurements, towards the identification of its competencies and deficiencies over the eastern Mediterranean (EM) during summer. Secondary organic aerosol (OA) formation is investigated towards improving OA behaviour. Biomass burning is a significant particle source, largely explaining OA underestimation (ca. 50%). More than 70% of the aerosol mass over the EM is related to trans-boundary transport during strong northeastern winds.
P. Zieger, P. P. Aalto, V. Aaltonen, M. Äijälä, J. Backman, J. Hong, M. Komppula, R. Krejci, M. Laborde, J. Lampilahti, G. de Leeuw, A. Pfüller, B. Rosati, M. Tesche, P. Tunved, R. Väänänen, and T. Petäjä
Atmos. Chem. Phys., 15, 7247–7267, https://doi.org/10.5194/acp-15-7247-2015, https://doi.org/10.5194/acp-15-7247-2015, 2015
Short summary
Short summary
The effect of water uptake (hygroscopicity) on aerosol light scattering properties is generally lower for boreal aerosol due to the dominance of organic substances. A columnar optical closure study using ground-based and airborne measurements of aerosol optical, chemical and microphysical properties was conducted and the implications and limitations are discussed.
V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann
Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, https://doi.org/10.5194/acp-15-7127-2015, 2015
Short summary
Short summary
LIVAS is a 3-D multi-wavelength global aerosol and cloud optical database optimized for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The global database is based on CALIPSO observations at 532nm, while for the conversion at 355nm EARLINET data are utilized.
A. Leskinen, P. Yli-Pirilä, K. Kuuspalo, O. Sippula, P. Jalava, M.-R. Hirvonen, J. Jokiniemi, A. Virtanen, M. Komppula, and K. E. J. Lehtinen
Atmos. Meas. Tech., 8, 2267–2278, https://doi.org/10.5194/amt-8-2267-2015, https://doi.org/10.5194/amt-8-2267-2015, 2015
Short summary
Short summary
A 29 m3 Teflon chamber was characterized and tested with oxidation experiments of toluene. Secondary organic aerosol yields of 12-42 % were obtained. These yields are comparable to those obtained in other laboratories.
E. Giannakaki, A. Pfüller, K. Korhonen, T. Mielonen, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, M. Josipovic, P. Tiitta, K. Chiloane, S. Piketh, H. Lihavainen, K. E. J. Lehtinen, and M. Komppula
Atmos. Chem. Phys., 15, 5429–5442, https://doi.org/10.5194/acp-15-5429-2015, https://doi.org/10.5194/acp-15-5429-2015, 2015
Short summary
Short summary
In this study we summarize 1 year of Raman lidar observations over South Africa. The analyses of lidar measurements presented here could assist in bridging existing gaps in the knowledge of vertical distribution of aerosols above South Africa, since limited long-term data of this type are available for this region. For the first time, we have been able to cover the full seasonal cycle on geometrical characteristics and optical properties of free tropospheric aerosol layers in the region.
L. Q. Hao, A. Kortelainen, S. Romakkaniemi, H. Portin, A. Jaatinen, A. Leskinen, M. Komppula, P. Miettinen, D. Sueper, A. Pajunoja, J. N. Smith, K. E. J. Lehtinen, D. R. Worsnop, A. Laaksonen, and A. Virtanen
Atmos. Chem. Phys., 14, 13483–13495, https://doi.org/10.5194/acp-14-13483-2014, https://doi.org/10.5194/acp-14-13483-2014, 2014
Short summary
Short summary
Positive matrix factorization (PMF) was applied to the unified high-resolution mass spectra organic species with NO+ and NO2+ ions from the measurement in a mixed region between the boreal forestland and the urban area. The PMF analysis succeeded in separating the mixed spectra into three distinct organic factors and one inorganic factor. The particulate organic nitrate was distinguished by PMF for the first time, with a contribution of one-third of the total nitrate mass.
J. Huttunen, A. Arola, G. Myhre, A. V. Lindfors, T. Mielonen, S. Mikkonen, J. S. Schafer, S. N. Tripathi, M. Wild, M. Komppula, and K. E. J. Lehtinen
Atmos. Chem. Phys., 14, 6103–6110, https://doi.org/10.5194/acp-14-6103-2014, https://doi.org/10.5194/acp-14-6103-2014, 2014
H. Portin, A. Leskinen, L. Hao, A. Kortelainen, P. Miettinen, A. Jaatinen, A. Laaksonen, K. E. J. Lehtinen, S. Romakkaniemi, and M. Komppula
Atmos. Chem. Phys., 14, 6021–6034, https://doi.org/10.5194/acp-14-6021-2014, https://doi.org/10.5194/acp-14-6021-2014, 2014
A. Hirsikko, E. J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C. R. Wood, M. Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K. E. J. Lehtinen, T. Laurila, T. Petäjä, M. Kulmala, and Y. Viisanen
Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, https://doi.org/10.5194/amt-7-1351-2014, 2014
K. Korhonen, E. Giannakaki, T. Mielonen, A. Pfüller, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, A. Ramandh, L. Ntsangwane, M. Josipovic, P. Tiitta, G. Fourie, I. Ngwana, K. Chiloane, and M. Komppula
Atmos. Chem. Phys., 14, 4263–4278, https://doi.org/10.5194/acp-14-4263-2014, https://doi.org/10.5194/acp-14-4263-2014, 2014
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013, https://doi.org/10.5194/acp-13-12089-2013, 2013
S. Bezantakos, K. Barmpounis, M. Giamarelou, E. Bossioli, M. Tombrou, N. Mihalopoulos, K. Eleftheriadis, J. Kalogiros, J. D. Allan, A. Bacak, C. J. Percival, H. Coe, and G. Biskos
Atmos. Chem. Phys., 13, 11595–11608, https://doi.org/10.5194/acp-13-11595-2013, https://doi.org/10.5194/acp-13-11595-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection and analysis of Lhù'ààn Mân' (Kluane Lake) dust plumes using passive and active ground-based remote sensing supported by physical surface measurements
Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products
Influence of electromagnetic interference on the evaluation of lidar-derived aerosol properties from Ny-Ålesund, Svalbard
Global 3-D distribution of aerosol composition by synergistic use of CALIOP and MODIS observations
Aerosol optical depth retrieval from the EarthCARE Multi-Spectral Imager: the M-AOT product
Observations of Dust Particle Orientation with the SolPol direct sun polarimeter
Evaluating the effects of columnar NO2 on the accuracy of aerosol optical properties retrievals
An explicit formulation for the retrieval of the overlap function in an elastic and Raman aerosol lidar
The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products
SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC
Retrieval of aerosol properties from zenith sky radiance measurements
Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia
Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data
HETEAC – the Hybrid End-To-End Aerosol Classification model for EarthCARE
An ensemble method for improving the estimation of planetary boundary layer height from radiosonde data
DeLiAn – a growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations
The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
POLIPHON conversion factors for retrieving dust-related cloud condensation nuclei and ice-nucleating particle concentration profiles at oceanic sites
Ground-based remote sensing of aerosol properties using high-resolution infrared emission and lidar observations in the High Arctic
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case
The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Observation of bioaerosol transport using wideband integrated bioaerosol sensor and coherent Doppler lidar
Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system
Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry – studies using synthetic data
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars
Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index
Aerosol models from the AERONET database: application to surface reflectance validation
Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6 × 6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data
Deep-learning-based post-process correction of the aerosol parameters in the high-resolution Sentinel-3 Level-2 Synergy product
Retrieval of UV–visible aerosol absorption using AERONET and OMI–MODIS synergy: spatial and temporal variability across major aerosol environments
Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
Ash particle refractive index model for simulating the brightness temperature spectrum of volcanic ash clouds from satellite infrared sounder measurements
Retrieval of aerosol properties using relative radiance measurements from an all-sky camera
Optimization of Aeolus' aerosol optical properties by maximum-likelihood estimation
A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments
Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm
Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Seyed Ali Sayedain, Norman T. O'Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech., 16, 4115–4135, https://doi.org/10.5194/amt-16-4115-2023, https://doi.org/10.5194/amt-16-4115-2023, 2023
Short summary
Short summary
We used (columnar) ground-based remote sensing (RS) tools and surface measurements to characterize local (drainage-basin) dust plumes at a site in the Yukon. Plume height, particle size, and column-to-surface ratios enabled insights into how satellite RS could be used to analyze Arctic-wide dust transport. This helps modelers refine dust impacts in their climate change simulations. It is an important step since local dust is a key source of dust deposition on snow in the sensitive Arctic region.
Ulla Wandinger, Moritz Haarig, Holger Baars, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 4031–4052, https://doi.org/10.5194/amt-16-4031-2023, https://doi.org/10.5194/amt-16-4031-2023, 2023
Short summary
Short summary
We introduce the algorithms that have been developed to derive cloud top height and aerosol layer products from observations with the Atmospheric Lidar (ATLID) onboard the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE). The products provide information on the uppermost cloud and geometrical and optical properties of aerosol layers in an atmospheric column. They can be used individually but also serve as input for algorithms that combine observations with EarthCARE’s lidar and imager.
Tim Poguntke and Christoph Ritter
Atmos. Meas. Tech., 16, 4009–4014, https://doi.org/10.5194/amt-16-4009-2023, https://doi.org/10.5194/amt-16-4009-2023, 2023
Short summary
Short summary
In this work we analyze the impact of electromagnetic interference on an aerosol lidar. We found that aging transient recorders may produce a noise with fixed frequency that can be removed a posteriori.
Rei Kudo, Akiko Higurashi, Eiji Oikawa, Masahiro Fujikawa, Hiroshi Ishimoto, and Tomoaki Nishizawa
Atmos. Meas. Tech., 16, 3835–3863, https://doi.org/10.5194/amt-16-3835-2023, https://doi.org/10.5194/amt-16-3835-2023, 2023
Short summary
Short summary
A synergistic retrieval method of aerosol components (water-soluble, light-absorbing, dust, and sea salt particles) from CALIOP and MODIS observations was developed. The total global 3-D distributions and those for each component showed good consistency with the CALIOP and MODIS official products and previous studies. The shortwave direct radiative effects of each component at the top and bottom of the atmosphere and for the heating rate were also consistent with previous studies.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Vasiliki Daskalopoulou, Panagiotis Ioannis Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-121, https://doi.org/10.5194/amt-2023-121, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Michaël Sicard, Federico Dios, Cristina Gil-Díaz, Daniel Camilo Fortunato dos Santos Oliveira, and Francesc Rocadenbosch
Atmos. Meas. Tech., 16, 3015–3025, https://doi.org/10.5194/amt-16-3015-2023, https://doi.org/10.5194/amt-16-3015-2023, 2023
Short summary
Short summary
We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals, plus an assumed lidar ratio. We assess the influence of the lidar ratio error in the overlap function retrieval and present retrieval examples.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023, https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Short summary
The paper describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from the SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this paper will help retain more measurements, particularly in the lower stratosphere during and following a volcanic event and other processes.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria Eugenia Cachorro, and Ángel Máximo de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2023-1040, https://doi.org/10.5194/egusphere-2023-1040, 2023
Short summary
Short summary
This paper shows the potential of a simple and robust radiometer like the ZEN-R52 as a possible alternative for aerosol properties retrieval in remote areas. It assesses the capability from GRASP to retrieve aerosol properties using only ZSR at 440, 500, 675 and 870 nm. The uncertainty and bias found in the retrieval show the limitations of the instrument and inversion strategy, but also demonstrate that the ZEN-R52, together with a developed GRASP-ZEN strategy, can provide useful information.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Huidong Yeo, and Sang-Woo Kim
Atmos. Meas. Tech., 16, 2673–2690, https://doi.org/10.5194/amt-16-2673-2023, https://doi.org/10.5194/amt-16-2673-2023, 2023
Short summary
Short summary
Aerosol height information is important when seeking an understanding of the vertical structure of the aerosol layer and long-range transport. In this study, a geometrical aerosol top height (ATH) retrieval using a parallax of two geostationary satellites is investigated. With sufficient longitudinal separation between the two satellites, a decent ATH product could be retrieved.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Xi Chen, Ting Yang, Zifa Wang, Futing Wang, and Haibo Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-78, https://doi.org/10.5194/amt-2023-78, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Uncertainties remain great in the planetary boundary layer height (PBLH) determination from radiosonde. We combine seven existing methods along with statistical modification on gradient-based methods. We find that the ensemble method can eliminate the overestimation of PBLH and reduce the inconsistency between individual methods. The ensemble method improves the effectiveness of PBLH to 70.8 %.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Brian Cairns, Xiaoguang Xu, and J. Vanderlei Martins
Atmos. Meas. Tech., 16, 2067–2087, https://doi.org/10.5194/amt-16-2067-2023, https://doi.org/10.5194/amt-16-2067-2023, 2023
Short summary
Short summary
Multi-angle polarimetric measurements have been shown to greatly improve the remote sensing capability of aerosols and help atmospheric correction for ocean color retrievals. However, the uncertainty correlations among different measurement angles have not been well characterized. In this work, we provided a practical framework to evaluate the impact of the angular uncertainty correlation in retrieval results and a method to directly estimate correlation strength from retrieval residuals.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Denghui Ji, Mathias Palm, Christoph Ritter, Philipp Richter, Xiaoyu Sun, Matthias Buschmann, and Justus Notholt
Atmos. Meas. Tech., 16, 1865–1879, https://doi.org/10.5194/amt-16-1865-2023, https://doi.org/10.5194/amt-16-1865-2023, 2023
Short summary
Short summary
To measuring aerosol components, a Fourier transform infrared spectrometer (FTIS) and a lidar are operated in Ny-Ålesund, Spitsbergen (78° N, 11° E). Using the FTIS, a retrieval algorithm is developed for dust, sea salt, black carbon, and sulfate. The distribution of aerosols or clouds is provided by lidar and used as an indicator for aerosol or cloud retrieval with the FTS. Thus, a two-instrument joint-observation scheme is designed and is used on the data measured from 2019 to the present.
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022, https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
Short summary
The authors propose a near-real-time procedure for the detection of volcanic clouds by means of Sentinel-3 satellite data and neural networks. The algorithm results in an automatic image classification where ashy pixels are distinguished from other surfaces with remarkable accuracy. The model is considerably faster if compared to other approaches which are time consuming, case specific, and not automatic. The algorithm can be significantly helpful for emergency management during eruption events.
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022, https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Short summary
Launched in December 1999, NASA’s Multi-angle Imaging SpectroRadiometer (MISR) has given researchers qualitative constraints on aerosol particle properties for the past 22 years. Here, we present a new MISR research aerosol retrieval algorithm (RA) that utilizes over-land surface reflectance data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) to address limitations of the MISR operational aerosol retrieval algorithm and improve retrievals of aerosol particle properties.
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022, https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
Short summary
We develop a new algorithm to get the vertical mass concentration profiles of fine aerosol components based on the synergy of ground-based remote sensing for the first time. The comparisons with in situ observations and chemistry transport models validate the performance of the algorithm. Uncertainties caused by input parameters are also assessed in this paper. We expected that the algorithm can provide a new idea for lidar inversion and promote the development of aerosol component profiles.
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022, https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Short summary
Visibility is how well we can see something. Visibility sensors, such as employed in meteorological observatories and airports, measure at a point at the instrument location, which may not be representative of visibilities further away, e.g. near the sea surface during sea spray. Light detecting and ranging (lidar) can measure visibility further away. We find wind lidar to be a viable tool to measure visibility with low accuracy, which could suffice for safety-uncritical applications.
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022, https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Short summary
We used aerosol profiles from the SAGE III/ISS instrument to develop an aerosol classification method that was tested on four case-study events (two volcanic, two fire) and supported with CALIOP aerosol products. The method worked well in identifying smoke and volcanic aerosol in the stratosphere for these events. Raikoke is presented as a demonstration of the limitations of this method.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022, https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Short summary
An approach to reveal variability in aerosol type at a high spatiotemporal resolution, by combining fluorescence and Mie–Raman lidar data, is presented. We applied this new classification scheme to lidar data obtained by LOA, University of Lille, in 2020–2021. It is demonstrated that the separation of the main particle types, such as smoke, dust, pollen, and urban, can be performed with a height resolution of 60 m and temporal resolution better than 10 min for the current lidar configuration.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022, https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary
Short summary
This paper describes modification of smoothness constraints on the imaginary part of the refractive index employed in the AERONET aerosol retrieval algorithm. This modification is termed relaxed due to the weaker strength of this new smoothness constraint. Applying the modified version of the smoothness constraint results in a significant reduction of retrieved light absorption by brown-carbon-containing aerosols.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Jan-Lukas Tirpitz, Udo Frieß, Robert Spurr, and Ulrich Platt
Atmos. Meas. Tech., 15, 2077–2098, https://doi.org/10.5194/amt-15-2077-2022, https://doi.org/10.5194/amt-15-2077-2022, 2022
Short summary
Short summary
MAX-DOAS is a widely used measurement technique for the remote detection of atmospheric aerosol and trace gases. It relies on the analysis of ultra-violet and visible radiation spectra of skylight. To date, information contained in the skylight's polarisation state has not been utilised. On the basis of synthetic data, we carried out sensitivity analyses to assess the potential of polarimetry for MAX-DOAS applications.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Marco Di Paolantonio, Davide Dionisi, and Gian Luigi Liberti
Atmos. Meas. Tech., 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022, https://doi.org/10.5194/amt-15-1217-2022, 2022
Short summary
Short summary
A procedure for the characterization of the lidar transmitter–receiver geometry was developed. This characterization is currently implemented in the Rome RMR lidar to optimize the telescope/beam alignment, retrieve the overlap function, and estimate the absolute and relative tilt of the laser beam. This procedure can be potentially used to complement the standard EARLINET quality assurance tests.
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary
Short summary
The aerosol optical depth (AOD) characteristics in an urban area of Rome were retrieved over a period of 11 years (2010–2020) to determine, for the first time, their effect on the incoming ultraviolet (UV) solar radiation. The surface forcing efficiency shows that the AOD is the primary parameter affecting the surface irradiance in Rome, and it is found to be greater for smaller zenith angles and for larger and more absorbing particles in the UV range (such as, e.g., mineral dust).
Jean-Claude Roger, Eric Vermote, Sergii Skakun, Emilie Murphy, Oleg Dubovik, Natacha Kalecinski, Bruno Korgo, and Brent Holben
Atmos. Meas. Tech., 15, 1123–1144, https://doi.org/10.5194/amt-15-1123-2022, https://doi.org/10.5194/amt-15-1123-2022, 2022
Short summary
Short summary
From measurements of the sky performed by AERONET, we determined the microphysical properties of the atmospheric particles (aerosols) for each AERONET site. We used the aerosol optical thickness and its variation over the visible spectrum. This allows us to determine an aerosol model useful for (but not only) the validation of the surface reflectance satellite-derived product. The impact of the aerosol model uncertainties on the surface reflectance validation has been found to be 1 % to 3 %.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Vinay Kayetha, Omar Torres, and Hiren Jethva
Atmos. Meas. Tech., 15, 845–877, https://doi.org/10.5194/amt-15-845-2022, https://doi.org/10.5194/amt-15-845-2022, 2022
Short summary
Short summary
Existing measurements of spectral aerosol absorption are limited, particularly in the UV region. We use the synergy of satellite and ground measurements to derive spectral single scattering albedo of aerosols from the UV–visible spectrum. The resulting spectral SSAs are used to investigate seasonality in absorption for carbonaceous, dust, and urban aerosols. Regional aerosol absorption models that could be used to make reliable assumptions in satellite remote sensing of aerosols are derived.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Hiroshi Ishimoto, Masahiro Hayashi, and Yuzo Mano
Atmos. Meas. Tech., 15, 435–458, https://doi.org/10.5194/amt-15-435-2022, https://doi.org/10.5194/amt-15-435-2022, 2022
Short summary
Short summary
Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds (VACs) and radiative transfer calculations, we attempt to simulate the measured brightness temperature spectra (BTS) of volcanic ash aerosols in the infrared region. In particular, the dependence on the ash refractive index (RI) model is investigated.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022, https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary
Short summary
The Aeolus satellite observes the Earth and can vertically detect any kind of particles (aerosols or clouds) in the atmosphere below it. These observations are typically very noisy, which needs to be accounted for. This work dampens the noise in Aeolus' aerosol and cloud data, which are provided publicly by the ESA, so that the scientific community can make better use of it. This makes the data potentially more useful for weather prediction and climate research.
Alberto Sorrentino, Alessia Sannino, Nicola Spinelli, Michele Piana, Antonella Boselli, Valentino Tontodonato, Pasquale Castellano, and Xuan Wang
Atmos. Meas. Tech., 15, 149–164, https://doi.org/10.5194/amt-15-149-2022, https://doi.org/10.5194/amt-15-149-2022, 2022
Short summary
Short summary
We present a novel approach that can be used to obtain microphysical properties of atmospheric aerosol, up to several kilometers in the atmosphere, from lidar measurements taken from the ground. Our approach provides accurate reconstructions under many different experimental conditions. Our results can contribute to the expansion of the use of remote sensing techniques for air quality monitoring and atmospheric science in general.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Oscar S. Sandvik, Johan Friberg, Moa K. Sporre, and Bengt G. Martinsson
Atmos. Meas. Tech., 14, 7153–7165, https://doi.org/10.5194/amt-14-7153-2021, https://doi.org/10.5194/amt-14-7153-2021, 2021
Short summary
Short summary
A method to form SO2 profiles in the stratosphere with high vertical resolution following volcanic eruptions is introduced. The method combines space-based high-resolution vertical aerosol profiles and SO2 measurements the first 2 weeks after an eruption with air mass trajectory analyses. The SO2 is located at higher altitude than in most previous studies. The detailed resolution of the SO2 profile is unprecedented compared to other methods.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Cited articles
Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller,
D., and Komppula, M.: Portable Raman Lidar PollyXT for Automated Profiling
of Aerosol Backscatter, Extinction, and Depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009.
Amiridis, V., Melas, D., Balis, D. S., Papayannis, A., Founda, D., Katragkou, E., Giannakaki, E.,
Mamouri, R. E., Gerasopoulos, E., and Zerefos, C.: Aerosol Lidar observations and
model calculations of the Planetary Boundary Layer evolution over Greece,
during the March 2006 Total Solar Eclipse, Atmos. Chem. Phys., 7, 6181–6189, https://doi.org/10.5194/acp-7-6181-2007, 2007.
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurements of aerosol
profiles with Raman lidar, Opt. Lett., 15, 746–748, 1990.
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.:
Independent measurements of extinction and backscatter profiles in Cirrus
clouds by using a combined Raman elastic-backscatter Lidar, Appl. Optics,
31, 7113–7131, 1992.
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of
the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J.,
Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S.,
Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F.,
Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H.,
Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I.,
Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F.,
Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R.,
Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an
emerging network of automated Raman-polarization lidars for continuous
aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016.
Babu, S., Kumar, A., Padmalal, D., Nair, S., Resmi, E. A., Sorcar, N., Raj,
S. R., and Rejani, R. P.: Annual Report 2017–2018, ESSO-National Centre for Earth
Science Studies, Ministry of Earth Sciences, Government of India, New Delhi, India, 2017.
Beare, R. J., Macvean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J. C.,
Jimenez, M. A., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T. S.,
Lundquist, J. K., McCabe, A., Moene, A. F., Noh, Y., Raasch, S., and Sullivan, P.: An
intercomparison of large-eddy simulations of the stable boundary layer,
Bound.-Lay. Meteorol., 118, 247–272, 2006.
Binietoglou, I., Amodeo, A., D'Amico, G., Giunta, A., Madonna, F., and
Pappalardo, G.: Examination of possible synergy between lidar and ceilometer
for the monitoring of atmospheric aerosols, Proc. SPIE 8182, Lidar
Technologies, Techniques, and Measurements for Atmospheric Remote Sensing
VII, SPIE 8182, 818209, https://doi.org/10.1117/12.897530, 2011.
Boers, R. and Eloranta, E. W.: Lidar measurements of the atmospheric entrainment
zone and the potential temperature jump across the top of the mixed layer,
Bound.-Lay. Meteorol., 34, 357–375, 1986.
Bravo-Aranda, J. A., de Arruda Moreira, G., Navas-Guzmán, F., Granados-Muñoz, M. J.,
Guerrero-Rascado, J. L., Pozo-Vázquez, D., Arbizu-Barrena, C., Olmo Reyes, F. J.,
Mallet, M., and Alados Arboledas, L.: A new methodology for PBL height estimations
based on lidar depolarization measurements: analysis and comparison against MWR
and WRF model-based results, Atmos. Chem. Phys., 17, 6839–6851, https://doi.org/10.5194/acp-17-6839-2017,
2017.
Brooks, I. M.: Finding boundary layer top: Application of a wavelet
covariance transform to lidar backscatter profiles, J. Atmos.
Ocean. Tech., 20, 1092–1105, 2003.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn State–NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Cimini, D., De Angelis, F., Dupont, J.-C., Pal, S., and Haeffelin, M.: Mixing layer height
retrievals by multichannel microwave radiometer observations, Atmos. Meas. Tech., 6, 2941–2951, https://doi.org/10.5194/amt-6-2941-2013, 2013.
Cohn, S. A. and Angevine, W. M.: Boundary layer height and entrainment zone
thickness measured by lidars and wind-profiling radars, J. Appl. Meteorol.,
39, 1233–1247, 2000.
Davis, K. J., Gamage, N., Hagelberg, C. R., Kiemle, C., Lenschow, D. H.,
and Sullivan, P. P.: An objective method for deriving atmospheric structure from
airborne lidar observations, J. Atmos. Ocean. Tech.,
17, 1455–1468, 2000.
de Arruda Moreira, G., Guerrero-Rascado, J. L., Benavent-Oltra, J. A., Ortiz-Amezcua, P., Román, R., Esteban
Bedoya-Velásquez, A., Bravo-Aranda, J. A., Olmo-Reyes,
F. J., Landulfo, E., and Alados-Arboledas, L.: Analyzing the turbulence in
the Planetary Boundary Layer by the synergic use of remote sensing systems:
Doppler wind lidar and aerosol elastic lidar, Atmos. Environ., 213, 185–195,
2018.
Dionisi, D., Keckhut, P., Liberti, G. L., Cardillo, F., and Congeduti, F.:
Midlatitude cirrus classification at Rome Tor Vergata through a multichannel
Raman–Mie–Rayleigh lidar, Atmos. Chem. Phys., 13, 11853–11868, https://doi.org/10.5194/acp-13-11853-2013, 2013.
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46,
3077–3107, 1989.
Emeis, S., Munkel, C., Vogt, S., Müller, W., and Schafer, K.: Atmospheric
boundary-layer structure from simultaneous SODAR, RASS, and ceilometer
measurements, Atmos. Environ., 38, 273–286, 2004.
Engelmann, R., Wandinger, U., Ansmann, A., Müller, D.,
Zeromskis, E., Althausen, D., and Wehner, B.: Lidar observations of the
vertical aerosol flux in the planetary boundary layer, J. Atmos. Ocean.
Tech., 25, 1296–1306, 2008.
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U.,
Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H.,
and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor
lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016.
Garratt, J. R.: The Atmospheric Boundary Layer, 335 pp., Cambridge
Atmospheric and Space Science Series, Cambridge Univ. Press, Cambridge,
1992.
Groß, S., Gasteiger, J., Freudenthaler, V., Wiegner, M., Geiß, A.,
Schladitz, A., Toledano, C., Kandler, K., Tesche, M., Ansmann, A., and
Wiedensohler, A.: Characterization of the planetary boundary layer during
SAMUM-2 by means of lidar measurements, Tellus, 63B, 695–705,
https://doi.org/10.1111/j.1600-0889.2011.00557.x, 2011.
Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi,
G. P., Lolli, S., O'Dowd, C. D., Sauvage, L., Xueref-Rémy, I., Wastine,
B., and Feist, D. G.: Evaluation of Mixing-Height Retrievals from Automatic
Profiling Lidars and Ceilometers in View of Future Integrated Networks in
Europe, Bound.-Lay. Meteorol., 143, 49–75, https://doi.org/10.1007/s10546-011-9643-z, 2012.
Hegde, P., Pant, P., Naja, M., Dumka, U. C., and Sagar, R.: South Asian dust
episode in June 2006: Aerosol observations in the central Himalayas,
Geophys. Res. Lett., 34, L23802, https://doi.org/10.1029/2007GL030692, 2007.
Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the
simulated East Asian summermonsoon, Q. J. Roy. Meteor. Soc., 136, 1481–1496,
2010.
Hong, S.-Y. and Kim, S.-W.: Stable boundary layer mixing in a vertical
diffusion scheme, Proc. Ninth Annual WRF User's Workshop, Boulder, CO,
National Center for Atmospheric Research, 3.3, available at:
http://www.mmm.ucar.edu/ wrf/users/workshops/WS2008/abstracts/3-03.pdf (last access: 11 April 2019),
2008.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Hyvärinen, A.-P., Lihavainen, H., Komppula, M., Panwar, T. S., Sharma, V. P.,
Hooda, R. K., and Viisanen, Y.: Aerosol measurements at the Gual Pahari EUCAARI
station: preliminary results from in-situ measurements, Atmos. Chem. Phys., 10, 7241–7252, https://doi.org/10.5194/acp-10-7241-2010, 2010.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the WRF
Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Jordan, N. S., Hoff, R. M., and Bacmeister, J. T.: Validation of Goddard Earth
Observing System-version 5 MERRA planetary boundary layer heights using
CALIPSO: VALIDATION OF GEOS-5 USING CALIPSO, J. Geophys.
Res.-Atmos., 115, D24218, https://doi.org/10.1029/2009JD013777,
2010.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/ detraining
plume model and its application in convective parameterization, J. Atmos.
Sci., 47, 2784–2802, 1990.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale
models: The Kain-Fritcsh scheme. The representation of cumulus convection in
numerical models, edited by: Emanuel, K. A. and Raymond, D. J., Amer. Meteor. Soc.,
246 p., 1993.
Kim, Y., Sartelet, K., Raut, J.-C., and Chazette, P.: Evaluation of the Weather
Research and Forecast/Urban Model Over Greater Paris, Bound.-Lay.
Meteorol., 149, 105–132, https://doi.org/10.1007/s10546-013-9838-6, 2013.
Klett, J. D.: Stable analytical inversion solution for processing lidar
returns, Appl. Optics, 20, 211–220, 1981.
Klett, J. D.: Lidar inversions with variable backscatter/extinction velues,
Appl. Optics, 24, 211–220, 1985.
Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A.-P.,
Baars, H., Engelmann, R., Althausen, D., Ansmann, A., Müller, D., Panwar, T. S.,
Hooda, R. K., Sharma, V. P., Kerminen, V.-M., Lehtinen, K. E. J., and
Viisanen, Y.: Technical Note: One year of Raman-lidar measurements in Gual
Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the
aerosol vertical structure, Atmos. Chem. Phys., 12, 4513–4524, https://doi.org/10.5194/acp-12-4513-2012, 2012.
Korhonen, K., Giannakaki, E., Mielonen, T., Pfüller, A., Laakso, L., Vakkari, V.,
Baars, H., Engelmann, R., Beukes, J. P., Van Zyl, P. G., Ramandh, A., Ntsangwane, L.,
Josipovic, M., Tiitta, P., Fourie, G., Ngwana, I., Chiloane, K., and Komppula, M.:
Atmospheric boundary layer top height in South Africa: measurements with lidar
and radiosonde compared to three atmospheric models, Atmos. Chem. Phys., 14, 4263–4278, https://doi.org/10.5194/acp-14-4263-2014, 2014.
Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L.,
Facchini, M. C., Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U.,
Wiedensohler, A., Boers, R., Boucher, O., de Leeuw, G., Denier van der Gon, H. A. C.,
Feichter, J., Krejci, R., Laj, P., Lihavainen, H., Lohmann, U., McFiggans, G.,
Mentel, T., Pilinis, C., Riipinen, I., Schulz, M., Stohl, A., Swietlicki, E.,
Vignati, E., Alves, C., Amann, M., Ammann, M., Arabas, S., Artaxo, P., Baars, H.,
Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M., Burkhart, J. F.,
Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S.,
Gilardoni, S., Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L.,
Halloran, P., Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C.,
Hu, M., Hyvärinen, A., Hõrrak, U., Iinuma, Y., Iversen, T., Josipovic, M.,
Kanakidou, M., Kiendler-Scharr, A., Kirkevåg, A., Kiss, G., Klimont, Z.,
Kolmonen, P., Komppula, M., Kristjánsson, J.-E., Laakso, L., Laaksonen, A.,
Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V., Makkonen, R.,
Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S., Morgan, W. T.,
Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar, J. J.,
Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L.,
Roberts, G., Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegri, K., Shen, X. J.,
Shiraiwa, M., Siebert, H., Sierau, B., Simpson, D., Sun, J. Y., Topping, D.,
Tunved, P., Vaattovaara, P., Vakkari, V., Veefkind, J. P., Visschedijk, A.,
Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward, S., Worsnop, D. R.,
van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen, V.-M.,
Carslaw, K., and Pandis, S. N.: General overview: European Integrated project
on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating
aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13061–13143, https://doi.org/10.5194/acp-11-13061-2011, 2011.
Lammert, A. and Bösenberg, J.: Determination of the convective
boundary-layer height with laser remote sensing, Bound.-Lay. Meteorol.,
119, 159–170, https://doi.org/10.1007/s10546-005-9020-x, 2006.
Lange, D., Alsina, J. T., Saeed, U., Tomás, S., and Rocadenbosch, F.: Atmospheric boundary layer height monitoring using
a Kalman filter and backscatter lidar returns, IEEE T. Geosci. Remote,
52, 4717–4728, https://doi.org/10.1109/TGRS.2013.2284110, 2014.
Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O.,
Brenninkmeijer, C. A. M., Campos, T., Cass, G. R., Dickerson, R. R., Fischer,
H., de Gouw, J. A., Hansel, A., Jefferson, A., Kley, D., de Laat, A. T. J.,
Lal, S., Lawrence, M. G., Lobert, J. M., Mayol-Bracero, O. L., Mitra, A. P.,
Novakov, T., Oltmans, S. J., Prather, K. A., Reiner, T., Rodhe, H., Scheeren,
H. A., Sikka, D., and Williams, J.: The Indian Ocean Experiment: Widespread
air pollution from South and Southeast Asia, Science, 291, 1031–1036, 2001.
Leventidou, E., Zanis, P., Balis, D., Giannakaki, E., Pytharoulis, I.,
and Amiridis, V.: Factors affecting the comparisons of planetary boundary layer
height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki,
Greece, Atmos. Environ., 74, 360–366, 2013.
Mahrt, L., Sun, J., Blumen, W., Delany, T., and Oncley, S.: Nocturnal boundary-layer
regimes, Bound.-Lay. Meteorol., 88, 255–278, 1999.
McGrath-Spangler, E. L. and Denning, A. S.: Estimates of North American
Summertime Planetary Boundary Layer Depths Derived from Space-borne Lidar,
J. Geophys. Res., 117, D15101, https://doi.org/10.1029/2012JD017615, 2012.
Menut, L., Flamant, C., Pelon, J., and Flamant, P. H.: Urban boundary-layer height
determination from lidar measurements over the Paris area, Appl. Optics, 38, 945–954, 1999.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, 1997.
Morille, Y., Haeffelin, M., Drobinski, P., and Pelon, J.: STRAT: an
automated algorithm to retrieve the vertical structure of the atmospherefrom
single–channel lidar data, J. Atmos. Ocean. Tech., 24, 761–775, 2007.
Münkel, C.: Mixing height determination with lidar ceilometers–results
from Helsinki testbed, Meteorol. Z., 16, 451–459,
https://doi.org/10.1127/0941-2948/2007/0221, 2007.
Nakajima, T., Yoon, S.-C., Ramanathan, V., Shi, G.-Y., Takemura, T.,
Higurashi, A., Takamura, T., Aoki, K., Sohn, B. J., Kim, S.-W., Tsuruta, H.,
Sugimoto, N., Shimizu, A. Tanimoto, H., Sawa, Y., Lin, N.-H., Lee, C.-T.,
Goto, D., and Schutgens, N.: Overview of the atmospheric Brown Cloud East
Asian Regional Experiment 2005 and a study of the aerosol direct radiative
forcing in east Asia, J. Geophys. Res., 112, D24S91,
https://doi.org/10.1029/2007JD009009, 2007.
Nakoudi, K., Giannakaki, E., Baars, H., Amiridis, V., Tombrou, M., and Komppula,
M.:
Planetary Boundary Layer variability over New Delhi, India during EUCAARI
project, EGU General Assembly, Vienna, Austria, 8–13 April 2018, vol. 20,
EGU2018-809, 2018.
Oke, T. R.: Boundary Layer Climates, 2nd edn., 435 p., Halsted Press, New
York, 1988.
Perrino, C., Tiwari, S., Catrambone, M., Torre, D. D., Rantica, E., and Canepari,
S.: Chemical characterization of atmospheric PM in Delhi, India, during
different periods of the year, including Diwali festival, Atmos Pollut. Res.,
2, 418–427, 2011.
Pielke, R. A., Davey, C. A., Niyogi, D., Fall, S., Steinweg-Woods, J.,
Hubbard, K., Lin, X., Cai, M., Lim, Y. K., and Li, H.: Unresolved issues
with the assessment of multidecadal global land surface temperature trends,
J. Geophys. Res., 112, D16113, https://doi.org/10.1029/2006JD008229, 2007.
Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C.
E., Nguyen, H., Stone, E. A., Schauer, J. J., Carmichael, G. R., Adhikary,
B., and Yoon, S. C.: Atmospheric brown clouds: Hemispherical and regional
variations in longrange transport, absorption, and radiative forcing, J.
Geophys. Res., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India: I – Fossil fuel combustion, Atmos. Environ., 36,
677–697, 2002a.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India. Part II – biomass combustion, Atmos. Environ., 36,
699–712, 2002b.
Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler,
C. A., Berg, L. K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C.,
Cook, A. L., and Harper, D. B.: Comparison of mixed layer heights from airborne
high spectral resolution lidar, ground-based measurements, and the WRF-Chem model
during CalNex and CARES, Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014,
2014.
Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., and
Tercier, P.: Review and intercomparison of operational methods for the
determination of the mixing height, Atmosphere, 34, 1001–1027, 2000.
Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary boundary
layer heights from radiosonde observations: Comparison of methods and
uncertainty analysis, J. Geophys. Res., 115,
https://doi.org/10.1029/2009JD013680, 2010.
Sharma, S., Vaishnav, R., Shukla, M. V., Kumar, P., Kumar, P., Thapliyal, P. K., Lal, S.,
and Acharya, Y. B.: Evaluation of cloud base height measurements from Ceilometer CL31
and MODIS satellite over Ahmedabad, India, Atmos. Meas. Tech., 9, 711–719, https://doi.org/10.5194/amt-9-711-2016, 2016.
Shin, H. H. and Hong, S.-Y.: Intercomparison of planetary boundary-layer
parameterizations in the WRF model for a single day from CASES-99,
Bound.-Lay. Meteorol., 139, 261–281, 2011.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the advanced research WRF version 2,
National Center For Atmospheric Research, Mesoscale and Microscale
Meteorology Div., Boulder CO, 2005.
Sorbjan, Z.: Structure of the Atmospheric Boundary Layer, 317 p., Prentice
Hall, Englewood Cliffs, NJ, 1989.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, 666 p., Kluwer,
Dordrecht, 1988.
Summa, D., Di Girolamo, P., Stelitano, D., and Cacciani, M.: Characterization of
the planetary boundary layer height and structure by Raman lidar: comparison of
different approaches, Atmos. Meas. Tech., 6, 3515–3525, https://doi.org/10.5194/amt-6-3515-2013, 2013.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit Forecasts
of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II:
Implementation of a New Snow Parameterization, Mon. Weather Rev., 136,
5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Tombrou, M., Dandou, A., Helmis, C., Akylas, E., Aggelopoulos,
G., Flocas, H., Assimakopoulos, V., and Soulakellis, N.: Model evaluation of the
atmospheric boundary layer and Mixed-layer evolution, Bound.-Lay.
Meteorol., 124, 61–79, 2007.
Tsaknakis, G., Papayannis, A., Kokkalis, P., Amiridis, V., Kambezidis, H. D.,
Mamouri, R. E., Georgoussis, G., and Avdikos, G.: Inter-comparison of lidar and
ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over
Athens, Greece, Atmos. Meas. Tech., 4, 1261–1273, https://doi.org/10.5194/amt-4-1261-2011, 2011.
Tyagi, A., Asnani, G. C., De, U. S., Hatwar, H. R., and Mazumbar, A. B.:
Monsoon Monograph, vol. 2, Goverment of India, Ministry of Earth Sciences, India Meteorological Department, 2009.
Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H., Liu, Z.,
Hu, Y., and Hostetler, C. A.: Fully automated analysis of space-based lidar data:
an overview of the CALIPSO retrieval algorithms and data products, edited by:
Singh, U. N., Proceedings Volume 5575, Laser Radar Techniques for Atmospheric Sensing,
Event: Remote Sensing, 2004, Maspalomas, Canary Islands, Spain,
p. 16, https://doi.org/10.1117/12.572024, 2004.
Vickers, D. and Mahrt, L.: The cospectral gap and turbulent flux
calculations, J. Atmos. Ocean. Tech., 20, 627–660, 2003.
Vickers, D. and Mahrt, L.: Evaluating formulations of stable boundary layer
height, J. Appl. Meteorol., 43, 1736–1749, 2004.
Voudouri, K. A., Giannakaki, E., Komppula, M., and Balis, D.: First results of cirrus
clouds properties by means of a PollyXT Raman lidar at two measurements
sites, EPJ Web of Conferences, 176, 05031, https://doi.org/10.1051/epjconf/201817605031, 2018.
Wandinger, U. and Ansmann, A.: Experimental determination of the lidar overlap profile
with Raman lidar, Appl. Optics, 41, 511–514, 2002.
Wang, K. C., Dickinson, R. E., and Shunlin, L.: Clear sky visibility has
decreased over land globally from 1973 to 2007, Science, 323, 1468–1470,
https://doi.org/10.1126/science.1167549, 2009.
Wang, W., Gong, W., Mao, F, and Pan, Z.: An Improved Iterative Fitting Method to
Estimate Nocturnal Residual Layer Height, Atmosphere, 7, 106, https://doi.org/10.3390/atmos7080106, 2016.
Wang, X. Y. and Wang, K. C.: Estimation of atmospheric mixing layer height from
radiosonde data, Atmos. Meas. Tech., 7, 1701–1709, https://doi.org/10.5194/amt-7-1701-2014, 2014.
Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, A.,
Pappalardo, G., Schäfer, K., and Thomas, W.: What is the benefit of ceilometers
for aerosol remote sensing? An answer from EARLINET, Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, 2014.
Wilcoxon, F.: Individual comparison by ranking methods, Biometrics, 1, 80–83,
1945.
Wilcoxon, F. and Wilcox, R. A.: Some Rapid Approximate Statistical Procedures, Lederle Laboratories, Division of the American
Cyanamid Company,
Pearl River, New York, 1964.
Winker, D. H.: CALIOP Algorithm Theoretical Basis, in: CALIOP Instrument, and
Algorithms Overview, NASA, Proceedings Volume 6409, Lidar Remote Sensing for Environmental Monitoring VII; 640902,
https://doi.org/10.1117/12.698003,
Event: SPIE Asia-Pacific Remote Sensing, 2006, Goa, India, 2006.
Zilitinkevich, S. and Baklanov, A.: Calculation of the Height of
Stable Boundary Layers in Operational Models, Danish Meteorological
Institute, Copenhagen, 2001.
Short summary
We characterized the height of the boundary layer (BLH) over New Delhi for almost a year using ground and satellite lidar measurements as well as model simulations. In the presence of multiple aerosol layers, the employed algorithm was very efficient. Due to prevailing meteorological conditions, the seasonal BLH cycle was slightly weaker than the one expected from the climatology. The aim was to assess the feasibility of the employed algorithm and compare the results to independent sources.
We characterized the height of the boundary layer (BLH) over New Delhi for almost a year using...