Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3743-2019
https://doi.org/10.5194/amt-12-3743-2019
Research article
 | 
11 Jul 2019
Research article |  | 11 Jul 2019

Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E

Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu

Related authors

Reconciling Satellite–Model Discrepancies in Aerosol–Cloud Interactions Using Near-LES Simulations of Marine Boundary Layer Clouds
Shaoyue Qiu, Xue Zheng, Peng Wu, Hsiang-He Lee, and Xiaoli Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-3465,https://doi.org/10.5194/egusphere-2025-3465, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Identifying MBL cloud boundaries and phase over the Southern Ocean using airborne radar and in-situ measurements during the SOCRATES campaign
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-874,https://doi.org/10.5194/egusphere-2025-874, 2025
Short summary
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024,https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Cloud phase estimation and macrophysical properties of low-level clouds using in-situ and radar measurements over the Southern Ocean during the SOCRATES campaign
Anik Das, Baike Xi, Xiaojian Zheng, and Xiquan Dong
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-124,https://doi.org/10.5194/amt-2024-124, 2024
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary
Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025,https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025,https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary

Cited articles

Ackerman, T. P. and Stokes, G. M: The Atmospheric Radiation Measurement Program, Phys. Today, 56, 38–44, https://doi.org/10.1063/1.1554135, 2003. 
ARM user facility (Atmospheric Radiation Measurement): Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM Zenith Radars (ARSCLKAZR1KOLLIAS), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Johnson, K., Toto, T., and Giangrande, S., ARM Data Center, available at: https://doi.org/10.5439/1350629 (last access: 18 May 2018), 2011. 
Battaglia, A., Saavedra, P., T. Rose, and Simmer, C.: Characterization of precipitating clouds by ground-based measurements with the triple-frequency polarized microwave radiometer ADMIRARI, J. Appl. Meteorol., 49, 394–414, 2009. 
Battaglia, A., Kummerow, C., Shin, D., and Williams, C.: Constraining Microwave Brightness Temperatures by Radar Brightband Observations, J. Atmos. Ocean. Technol., 20, 856–871, 2003. 
Cadeddu, M. P., Liljegren, J. C., and Turner, D. D.: The Atmospheric radiation measurement (ARM) program network of microwave radiometers: instrumentation, data, and retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-2013, 2013. 
Download
Short summary
Liquid water path (LWP) is a combination of rain liquid water path (RLWP) and cloud liquid water path (CLWP) in stratiform precipitation systems. LWP partitioning is important but poorly understood. Here we estimate the RLWP and CLWP below the melting base simultaneously and separately using ceilometer and radar measurements. Results show that the occurrence of cloud particles below the melting base is low; however, when cloud particles exist, the CLWP value is much larger than the RLWP.
Share