Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1357–1371, 2020
https://doi.org/10.5194/amt-13-1357-2020

Special issue: Flow in complex terrain: the Perdigão campaigns (WES/ACP/AMT...

Atmos. Meas. Tech., 13, 1357–1371, 2020
https://doi.org/10.5194/amt-13-1357-2020

Research article 24 Mar 2020

Research article | 24 Mar 2020

Analysis of flow in complex terrain using multi-Doppler lidar retrievals

Tyler M. Bell et al.

Related authors

Turbulence dissipation rate estimated from lidar observations during the LAPSE-RATE field campaign
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021,https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Low-level buoyancy as a tool to understand boundary layer transitions
Francesca M. Lappin, Tyler M. Bell, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-68,https://doi.org/10.5194/amt-2021-68, 2021
Preprint under review for AMT
Short summary
Remote-sensing and radiosonde datasets collected in the San Luis Valley during the LAPSE-RATE campaign
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021,https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Observations of the thermodynamic and kinematic state of the atmospheric boundary layer over the San Luis Valley, CO, using the CopterSonde 2 remotely piloted aircraft system in support of the LAPSE-RATE field campaign
Elizabeth A. Pillar-Little, Brian R. Greene, Francesca M. Lappin, Tyler M. Bell, Antonio R. Segales, Gustavo Britto Hupsel de Azevedo, William Doyle, Sai Teja Kanneganti, Daniel D. Tripp, and Phillip B. Chilson
Earth Syst. Sci. Data, 13, 269–280, https://doi.org/10.5194/essd-13-269-2021,https://doi.org/10.5194/essd-13-269-2021, 2021
Short summary
Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere
Tyler M. Bell, Brian R. Greene, Petra M. Klein, Matthew Carney, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 3855–3872, https://doi.org/10.5194/amt-13-3855-2020,https://doi.org/10.5194/amt-13-3855-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
Xingou Xu and Ad Stoffelen
Atmos. Meas. Tech., 14, 7435–7451, https://doi.org/10.5194/amt-14-7435-2021,https://doi.org/10.5194/amt-14-7435-2021, 2021
Short summary
Evaluation of convective boundary layer height estimates using radars operating at different frequency bands
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021,https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021,https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021,https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary

Cited articles

Banta, R. M., Pichugina, Y. L., Kelley, N. D., Hardesty, R. M., and Brewer, W. A.: Wind Energy Meteorology: Insight into Wind Properties in the Turbine-Rotor Layer of the Atmosphere from High-Resolution Doppler Lidar, B. Am. Meteorol. Soc., 94, 883–902, https://doi.org/10.1175/BAMS-D-11-00057.1, 2013. a
Banta, R. M., Pichugina, Y. L., Brewer, W. A., Lundquist, J. K., Kelley, N. D., Sandberg, S. P., Alvarez II, R. J., Hardesty, R. M., and Weickmann, A. M.: 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar, J. Atmos. Ocean Tech., 32, 904–914, https://doi.org/10.1175/JTECH-D-14-00078.1, 2015. a
Barthelmie, R., Pryor, S., Wildmann, N., and Menke, R.: Wind turbine wake characterization in complex terrain via integrated Doppler lidar data from the Perdigão experiment, J. Phys. Conf. Ser., 1037, 052022, https://doi.org/10.1088/1742-6596/1037/5/052022, 2018. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009. a
Bonin, T. A., Choukulkar, A., Brewer, W. A., Sandberg, S. P., Weickmann, A. M., Pichugina, Y. L., Banta, R. M., Oncley, S. P., and Wolfe, D. E.: Evaluation of turbulence measurement techniques from a single Doppler lidar, Atmos. Meas. Tech., 10, 3021–3039, https://doi.org/10.5194/amt-10-3021-2017, 2017. a
Download
Short summary
This study investigates the utility of using multi-Doppler retrievals during the Perdigão 2017 campaign. By combining scans from the multitude of Doppler lidars, it was possible to derive virtual towers that greatly extend the range of traditional in situ meteorological towers. Uncertainties from the measurements are analyzed and discussed. Despite multiple sources of error, it was found that the virtual towers are useful for analyzing the complex flows observed during the campaign.