Articles | Volume 13, issue 8
Atmos. Meas. Tech., 13, 4141–4158, 2020
https://doi.org/10.5194/amt-13-4141-2020

Special issue: CoMet: a mission to improve our understanding and to better...

Atmos. Meas. Tech., 13, 4141–4158, 2020
https://doi.org/10.5194/amt-13-4141-2020

Research article 04 Aug 2020

Research article | 04 Aug 2020

Towards improved turbulence estimation with Doppler wind lidar velocity-azimuth display (VAD) scans

Norman Wildmann et al.

Related authors

Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the MAMAP instrument during CoMet
Sven Krautwurst, Konstantin Gerilowski, Jakob Borchardt, Norman Wildmann, Michal Galkowski, Justyna Swolkien, Julia Marshall, Alina Fiehn, Anke Roiger, Thomas Ruhtz, Christoph Gerbig, Jaroslaw Necki, John P. Burrows, Andreas Fix, and Heinrich Bovensmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1014,https://doi.org/10.5194/acp-2020-1014, 2021
Preprint under review for ACP
Short summary
Distributed wind measurements with multiple quadrotor UAVs in the atmospheric boundary layer
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-471,https://doi.org/10.5194/amt-2020-471, 2021
Preprint under review for AMT
Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-962,https://doi.org/10.5194/acp-2020-962, 2020
Preprint under review for ACP
Short summary
Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach
Alina Fiehn, Julian Kostinek, Maximilian Eckl, Theresa Klausner, Michał Gałkowski, Jinxuan Chen, Christoph Gerbig, Thomas Röckmann, Hossein Maazallahi, Martina Schmidt, Piotr Korbeń, Jarosław Neçki, Pawel Jagoda, Norman Wildmann, Christian Mallaun, Rostyslav Bun, Anna-Leah Nickl, Patrick Jöckel, Andreas Fix, and Anke Roiger
Atmos. Chem. Phys., 20, 12675–12695, https://doi.org/10.5194/acp-20-12675-2020,https://doi.org/10.5194/acp-20-12675-2020, 2020
Short summary
Analysis of flow in complex terrain using multi-Doppler lidar retrievals
Tyler M. Bell, Petra Klein, Norman Wildmann, and Robert Menke
Atmos. Meas. Tech., 13, 1357–1371, https://doi.org/10.5194/amt-13-1357-2020,https://doi.org/10.5194/amt-13-1357-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam
Viktor A. Banakh, Igor N. Smalikho, and Andrey V. Falits
Atmos. Meas. Tech., 14, 1511–1524, https://doi.org/10.5194/amt-14-1511-2021,https://doi.org/10.5194/amt-14-1511-2021, 2021
Spectral correction of turbulent energy damping on wind lidar measurements due to spatial averaging
Matteo Puccioni and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 1457–1474, https://doi.org/10.5194/amt-14-1457-2021,https://doi.org/10.5194/amt-14-1457-2021, 2021
Short summary
Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021,https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method
Maryna Lukach, David Dufton, Jonathan Crosier, Joshua M. Hampton, Lindsay Bennett, and Ryan R. Neely III
Atmos. Meas. Tech., 14, 1075–1098, https://doi.org/10.5194/amt-14-1075-2021,https://doi.org/10.5194/amt-14-1075-2021, 2021
Short summary
Assimilation of lidar planetary boundary layer height observations
Andrew Tangborn, Belay Demoz, Brian J. Carroll, Joseph Santanello, and Jeffrey L. Anderson
Atmos. Meas. Tech., 14, 1099–1110, https://doi.org/10.5194/amt-14-1099-2021,https://doi.org/10.5194/amt-14-1099-2021, 2021
Short summary

Cited articles

Banakh, V. and Smalikho, I.: Coherent Doppler Wind Lidars in a Turbulent Atmosphere, Radar, Artech House, Boston, MA, USA, 2013. a, b
Banakh, V. A. and Smalikho, I. N.: Lidar Estimates of the Anisotropy of Wind Turbulence in a Stable Atmospheric Boundary Layer, Remote Sens.-Basel, 11, 2115, https://doi.org/10.3390/rs11182115, 2019. a
Banakh, V. A., Smalikho, I. N., Köpp, F., and Werner, C.: Measurements of Turbulent Energy Dissipation Rate with a CW Doppler Lidar in the Atmospheric Boundary Layer, J. Atmos. Ocean Tech., 16, 1044–1061, https://doi.org/10.1175/1520-0426(1999)016<1044:MOTEDR>2.0.CO;2, 1999. a
Bange, J., Beyrich, F., and Engelbart, D. A. M.: Airborne Measurements of Turbulent Fluxes during LITFASS-98: A Case Study about Method and Significance, Theor. Appl. Climatol., 73, 35–51, 2002. a
Beyrich, F., Leps, J.-P., Mauder, M., Bange, J., Foken, T., Huneke, S., Lohse, H., Lüdi, A., Meijninger, W., Mironov, D., Weisensee, U., and Zittel, P.: Area-Averaged Surface Fluxes Over the Litfass Region Based on Eddy-Covariance Measurements, Bound.-Lay. Meteorol., 121, 33–65, https://doi.org/10.1007/s10546-006-9052-x, 2006. a