Articles | Volume 13, issue 11
Atmos. Meas. Tech., 13, 5955–5975, 2020
https://doi.org/10.5194/amt-13-5955-2020
Atmos. Meas. Tech., 13, 5955–5975, 2020
https://doi.org/10.5194/amt-13-5955-2020

Research article 09 Nov 2020

Research article | 09 Nov 2020

Improving GOES Advanced Baseline Imager (ABI) aerosol optical depth (AOD) retrievals using an empirical bias correction algorithm

Hai Zhang et al.

Related authors

Screening for snow/snowmelt in SNPP VIIRS aerosol optical depth algorithm
Jingfeng Huang, Istvan Laszlo, Lorraine A. Remer, Hongqing Liu, Hai Zhang, Pubu Ciren, and Shobha Kondragunta
Atmos. Meas. Tech., 11, 5813–5825, https://doi.org/10.5194/amt-11-5813-2018,https://doi.org/10.5194/amt-11-5813-2018, 2018
Short summary
Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016,https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021,https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Simulated reflectance above snow constrained by airborne measurements of solar radiation: implications for the snow grain morphology in the Arctic
Soheila Jafariserajehlou, Vladimir V. Rozanov, Marco Vountas, Charles K. Gatebe, and John P. Burrows
Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021,https://doi.org/10.5194/amt-14-369-2021, 2021
Short summary
ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set
Antonis Gkikas, Emmanouil Proestakis, Vassilis Amiridis, Stelios Kazadzis, Enza Di Tomaso, Alexandra Tsekeri, Eleni Marinou, Nikos Hatzianastassiou, and Carlos Pérez García-Pando
Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021,https://doi.org/10.5194/amt-14-309-2021, 2021
Short summary
Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer
Jae-Sik Min, Moon-Soo Park, Jung-Hoon Chae, and Minsoo Kang
Atmos. Meas. Tech., 13, 6965–6987, https://doi.org/10.5194/amt-13-6965-2020,https://doi.org/10.5194/amt-13-6965-2020, 2020
Short summary
Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020,https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary

Cited articles

ABI AOD ATBD: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter, NOAA/NESDIS/STAR, Version 4.2, 14 February 2018, available at: https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/docs/GOES-R_ABI_AOD_ATBD_V4.2_20180214.pdf (last access: 24 February 2020), 2018. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019 
Green, M., Kondragunta, S., Ciren, P., and Xu, C. Y.: Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois, J. Air Waste Manag. Assoc., 59, 1082– 1091, 2009. 
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., Holz, R. E., and Heidinger, A. K.: Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign, Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, 2019. 
Download
Short summary
Geostationary Operational Environmental Satellites (GOES) retrieve high temporal resolution aerosol optical depth, which is a measure of the aerosol quantity within the atmospheric column. This work introduces an algorithm that improves the accuracy of the aerosol optical depth retrievals from GOES. The resulting data product can be used in monitoring the air quality and climate change research.