Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring sudden stratospheric warmings using radio occultation: a new approach demonstrated based on the 2009 event
Ying Li
CORRESPONDING AUTHOR
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation
Academy for Precision Measurement Science and Technology (APM), Chinese
Academy of Sciences, Wuhan, 430071, China
Gottfried Kirchengast
Wegener Center for Climate and Global Change (WEGC) and Institute
for Geophysics, Astrophysics, and Meteorology/Institute of Physics,
University of Graz, 8010 Graz, Austria
Marc Schwärz
Wegener Center for Climate and Global Change (WEGC) and Institute
for Geophysics, Astrophysics, and Meteorology/Institute of Physics,
University of Graz, 8010 Graz, Austria
Florian Ladstädter
Wegener Center for Climate and Global Change (WEGC) and Institute
for Geophysics, Astrophysics, and Meteorology/Institute of Physics,
University of Graz, 8010 Graz, Austria
Yunbin Yuan
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation
Academy for Precision Measurement Science and Technology (APM), Chinese
Academy of Sciences, Wuhan, 430071, China
Related authors
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Florian Ladstädter, Matthias Stocker, Sebastian Scher, and Andrea K. Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2100, https://doi.org/10.5194/egusphere-2025-2100, 2025
Short summary
Short summary
The tropopause, the boundary between the lower and upper atmosphere, is a sensitive marker of climate change. We studied changes in tropopause height and temperature over the past two decades using precise satellite observations. We found warming in the tropics and rising tropopause heights in many regions, especially over Asia and the Middle East. These changes reflect how both atmospheric layers are responding to climate change and highlight the need for continued satellite monitoring.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
Alejandro de la Torre, Peter Alexander, Torsten Schmidt, Andrea K. Steiner, Florian Ladstädter, Rodrigo Hierro, and Pablo Llamedo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1654, https://doi.org/10.5194/egusphere-2024-1654, 2024
Preprint archived
Short summary
Short summary
A single tropopause separates the troposphere below from the stratosphere above. In regions of strong vertical wind shear, a second tropopause layer may be associated to complex weather patterns. From GNSS radio occultation data, the distribution of multiple tropopause and its possible relation to the variability of climate indices is explored. A cluster analysis is applied to geographically associate the DT occurrences with the climate indices and a multivariate linear regression is constructed
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Cited articles
Andrews, D. G., Holton, J. G., and Leovy, C.B.: Middle Atmospheres dynamics, Academic Press, San Diego, California, 489 pp., 1987.
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017.
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Biondi, R., Steiner, A. K., Kirchengast, G., and Rieckh, T.: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation, Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, 2015.
Biondi, R., Steiner, A. K., Kirchengast, G., Brenot, H., and Rieckh, T.: Supporting the detection and monitoring of volcanic clouds: a promising new application of global navigation satellite system radio occultation, Adv. Space. Res., 60, 2707–2722 , https://doi.org/10.1016/j.asr.2017.06.039, 2017.
Bosilovich M.G., Kennedy J., Dee D., Allan R., O'Neill A.: On the
Reprocessing and Reanalysis of Observations for Climate in: Climate Science for Serving Society, edited by: Asrar, G. and
Hurrell, J., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6692-1_3, 2013.
Brunner, L., Steiner, A. K., Scherllin-Pirscher, B., and Jury, M. W.: Exploring atmospheric blocking with GPS radio occultation observations, Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, 2016.
Butler, A. H. and Gerber, E. P.: Optimizing the definition of a sudden stratospheric warming, J. Climate, 31, 2337–2344, https://doi.org/10.1175/JCLI-D-17-0648.1, 2018.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings, B. Am. Meteor. Soc., 96, 1913–1928, https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks, J. Climate., 20, 449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Christiansen, B.: Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: Model and reanalysis, J. Geophys. Res., 106, 27307–27322, https://doi.org/10.1029/2000JD000214, 2001.
Dhaka, S. K., Kumar, V., Choudhary, R. K., Ho, S. P., Takahashi, M., and Yoden, S.: Indications of a strong dynamical coupling between the polar and tropical regions during the sudden stratospheric warming event January 2009, based on COSMIC/FORMASAT-3 satellite temperature data, Atmos. Res., 166, 60–69, https://doi.org/10.1016/j.atmosres.2015.06.008, 2015.
Eguchi, N. and Kodera, K.: Impacts of stratospheric sudden warming event on tropical clouds and moisture fields in the TTL: a case study, Scientific online letters on the atmosphere: Sola, 6, 137–140, https://doi.org/10.2151/sola.2010-035, 2010.
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and Kirchengast, G.: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 %, Atmos. Meas. Tech., 4, 2007–2018, https://doi.org/10.5194/amt-4-2007-2011, 2011.
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy, S. S.: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol. Terr. Phys., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002.
Harada, Y., Goto, A., Hasegawa, H., Fujikawa, N., Naoe, H., and Hirooka, T.: A Major stratospheric sudden warming event in January 2009, J. Atmos. Sci., 67, 2052–2069, https://doi.org/10.1175/2009JAS3320.1, 2010.
Hersbach, H., Bell, W., Berrisford, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers., D, Simmons, A., Soci, C., and Dee, D.: Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsl., 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi1, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara1, G., Dahlgren, P., Dee,
D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan1,R.J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Radnoti, G., De
Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut. J.-N.:
The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hitchcock, P., Shepherd, T. G., and G. L. Manney.: Statistical characterization of Arctic polar-night jet oscillation events, J. Climate, 26, 2096–2116, https://doi.org/10.1175/JCLI-D-12-00202.1, 2013.
Klingler, R.: Observing Sudden Stratospheric Warmings with Radio Occultation Data, with Focus on the Event 2009, MSc thesis, University of Graz, Graz, Austria, 2014.
Kodera, K., Eguchi, N., Lee, J.N., Kuroda, Y., and Yukimoto, S.: Sudden changes in the tropical stratospheric and tropospheric circulation during January 2009, J. Meteorol. Soc. Jpn., 89, 283–290,
https://doi.org/10.2151/jmsj.2011-308, 2011.
Kohma, M. and K. Sato.: Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings, J. Geophys. Res. Atmos., 119, 10100–10113, https://doi.org/10.1002/2014JD021746, 2014.
Kuroda, Y. and K. Kodera: Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter, J. Geophys. Res., 109, D11112, https://doi.org/10.1029/2003JD004123, 2004.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys.Res., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Labitzke, K. and Kunze, M.: On the remarkable Arctic winter in 2008/2009, J. Geophys. Res. Atmos, 114, D00I02, https://doi.org/10.1029/2009JD012273, 2009.
Labitzke, K. and Naujokat, B.: The lower Arctic stratosphere in winter since 1952, SPARC Newsletter, No. 15, World Climate Research Programme SPARC Office, Zurich, Switzerland, 11–14, 2000.
Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G.: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013, Atmos. Meas. Tech., 8, 1819–1834, https://doi.org/10.5194/amt-8-1819-2015, 2015.
Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The life cycle of the northern hemisphere sudden stratospheric warmings, J. Climate, 17, 2584–2596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2, 2004.
Lin, J. T., Lin, C. H., Chang, L. C., Huang, H. H., Liu, J. Y., Chen, A. B., Chen, C. H., and Liu, C. H.: Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming, Geophys. Res. Lett., 39, L02101, https://doi.org/10.1029/2011GL050248, 2012.
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O'Clerigh, E., and Marquardt, C.: Prospects of the EPS GRAS mission for operational atmospheric applications, B. Am. Meteor. Soc., 89, 1863–1875, https://doi.org/10.1175/2008BAMS2399.1, 2008.
Manney, G. L., Krüger, K., Pawson, S., Minschwaner, K., Schwartz, M. J.,
Daffer, W. H., Livesey, N. J., Mlynczak, M. G., Remsberg, E. E., Russell,
J. M., and Waters, J. W.: The evolution of the stratopause during the 2006
major warming: satellite data and assimilated meteorological analyses, J.
Geophys. Res., 113, D11115, https://doi.org/10.1029/2007JD009097, 2008.
Manney, G. L., Schwartz, M. J., Kruger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Auramicrowave limb sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009GL038586, 2009.
McInturff, R. M.: Stratospheric warmings: Synoptic, dynamic and
general-circulation aspects, NASA Reference Publ., USA, NASA-RP-1017, 174, 1978.
Newman, P. A., Coy, L., Kramarova, N., Nash, E. R., and Strahan, S.: The Major Stratospheric Sudden Warming of February 2018, Thursday, 21 March 2019, Vienna, Aerosol and Environmental Physics Group, Seminar talk, 2018.
Parker, W. S.: Reanalyses and observations: What's the difference? B. Am. Meteor. Soc., 97, 1565–1572, https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.
Sathishkumar, S. and Sridharan, S.: Observations of 2–4 day
inertia-gravity waves from the equatorial troposphere to the F region during
the sudden stratospheric warming event of 2009, J. Geophys. Res., 116,
A12320, https://doi.org/10.1029/2011JA017096, 2011.
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model, Atmos. Meas. Tech., 4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011a.
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Kuo, Y.-H., and Foelsche, U.: Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation, Atmos. Meas. Tech., 4, 1875–1890, https://doi.org/10.5194/amt-4-1875-2011, 2011b.
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Schwaerz, M., and Leroy, S. S.: The power of vertical geolocation of atmospheric profiles from GNSS radio occultation, J. Geophys. Res.-Atmos., 122, 1595–1616, https://doi.org/10.1002/2016JD025902, 2017.
Schreiner, W., Rocken, C., Sokolovskiy, S., Syndergaard, S. and Hunt, D.: Estimates of the precision of GPS radio occultations from the
COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808,
https://doi.org/10.1029/2006GL027557, 2007.
Schwaerz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J., Ladstädter, F., and Angerer, B.: Multi-Mission Validation by Satellite Radio Occultation – Extension Project, Final Report for ESA/ESRIN No. 01/2016, WEGC, University of Graz, Graz, Austria, 2016.
Simmons, A., Soci, C., Nicolas, J., Bell, B., Berrisford, P., Dragani, R., Flemming, J., Haimberger1, L., Healy, S., Hersbach, H., Horányi, A., Inness, A., Muñoz-Sabater, J Radu, R., and Schepers, D.: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1, ECMWF Tech., Memo., No. 859, https://doi.org/10.21957/rcxqfmg0, 2020.
Siskind, D. E., Eckermann, S. D., Coy, L., Mccormack, J. P., and Randall, C. E.: On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent, Geophys. Res. Lett., 34, L09806, https://doi.org/10.1029/2007GL029293, 2007.
Steiner, A. K., Kirchengast, G., Foelsche, U., Kornblueh, L., Manzini, E., and Bengtsson, L.: GNSS occultation sounding for climate monitoring, Phys. Chem. Earth (A)., 26, 113–124, https://doi.org/10.1016/S1464-1895(01)00034-5, 2001.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate monitoring and change detection, Radio Sci., 46, RS0D24, https://doi.org/10.1029/2010RS004614, 2011.
Steiner, A. K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A. J., Scherllin-Pirscher, B., Gleisner, H., von Engeln, A., Schmidt, T., Ao, C., Leroy, S. S., Kursinski, E. R., Foelsche, U., Gorbunov, M., Heise, S., Kuo, Y.-H., Lauritsen, K. B., Marquardt, C., Rocken, C., Schreiner, W., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Quantification of structural uncertainty in climate data records from GPS radio occultation, Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, 2013.
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020.
Sun, Y., Bai, W., Liu, C., Liu, Y., Du, Q., Wang, X., Yang, G., Liao, M., Yang, Z., Zhang, X., Meng, X., Zhao, D., Xia, J., Cai, Y., and Kirchengast, G.: The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications, Atmos. Meas. Tech., 11, 5797–5811, https://doi.org/10.5194/amt-11-5797-2018, 2018.
Taguchi, M.: Latitudinal Extension of Cooling and Upwelling Signals associated with Stratospheric Sudden Warmings, J. Meteor. Soc. Jpn., 89, 571–580, https://doi.org/10.2151/jmsj.2011-511, 2011.
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric connection to northern hemisphere wintertime weather: implications for prediction, J. Climate, 15, 1421–1428,
https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2,
2002.
Untch, A., Miller, M., Hortal, M., Buizza, R., and Janssen, P.: Towards a global meso-scale model: The high-resolution system T799L91 and T399L62 EPS, ECMWF Newsl., 108, 6–13, 2006.
Wang, L. and Alexander, M. J.: Gravity wave activity during stratospheric sudden warmings in the 2007–2008 Northern Hemisphere winter, J. Geophys. Res.-Atmos., 114, D18108, https://doi.org/10.1029/2009JD011867,2009.
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grundwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke, K.: Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28, 32633266, https://doi.org/10.1029/2001GL013117, 2001.
Wickert, J., Beyerle, G., König, R., Heise, S., Grunwaldt, L., Michalak, G., Reigber, Ch., and Schmidt, T.: GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding, Ann. Geophys., 23, 653–658, https://doi.org/10.5194/angeo-23-653-2005, 2005.
Yoshida, K. and Yamazaki, K.: Tropical cooling in the case of stratospheric sudden warming in January 2009: focus on the tropical tropopause layer, Atmos. Chem. Phys., 11, 6325–6336, https://doi.org/10.5194/acp-11-6325-2011, 2011.
Yue, X., Schreiner, W.S., Lei, J., Rocken, C., Hunt, D.C., Kuo, Y.-H. and Wan, W.: Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event, J. Geophys. Res., 115, A00G09, https://doi.org/10.1029/2010JA015466, 2010.
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using...