Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-3169-2021
https://doi.org/10.5194/amt-14-3169-2021
Research article
 | 
29 Apr 2021
Research article |  | 29 Apr 2021

RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland

Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne

Related authors

Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024,https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
On the polarimetric backscatter by a still or quasi-still wind turbine
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023,https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
From model to radar variables: a new forward polarimetric radar operator for COSMO
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018,https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary
Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017,https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee​​​​​​​ Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024,https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024,https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary

Cited articles

Anagnostou, E. N. and Krajewski, W. F.: Real-Time Radar Rainfall Estimation. Part I: Algorithm Formulation, J. Atmos. Ocean. Tech., 16, 189–197, https://doi.org/10.1175/1520-0426(1999)016<0189:RTRREP>2.0.CO;2, 1999. a
Anagnostou, M. N., Kalogiros, J., Anagnostou, E. N., Tarolli, M., Papadopoulos, A., and Borga, M.: Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins, J. Hydrol., 394, 4–16, https://doi.org/10.1016/j.jhydrol.2010.06.026, 2010. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Barton, Y., Sideris, I. V., Germann, U., and Martius, O.: A method for real-time temporal disaggregation of blended radar–rain gauge precipitation fields, Meteorol. Appl., 27, e1843, https://doi.org/10.1002/met.1843, 2020. a, b
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Download
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.