Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-3169-2021
https://doi.org/10.5194/amt-14-3169-2021
Research article
 | 
29 Apr 2021
Research article |  | 29 Apr 2021

RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland

Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne

Related authors

Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024,https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
On the polarimetric backscatter by a still or quasi-still wind turbine
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023,https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
From model to radar variables: a new forward polarimetric radar operator for COSMO
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018,https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary
Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017,https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Propagating information content: an example with advection
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025,https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Best estimate of the planetary boundary layer height from multiple remote sensing measurements
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025,https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025,https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025,https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary
Observed impact of the GNSS clock data rate on radio occultation bending angles for Sentinel-6A and COSMIC-2
Sebastiano Padovan, Axel von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscan, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech., 18, 3217–3228, https://doi.org/10.5194/amt-18-3217-2025,https://doi.org/10.5194/amt-18-3217-2025, 2025
Short summary

Cited articles

Anagnostou, E. N. and Krajewski, W. F.: Real-Time Radar Rainfall Estimation. Part I: Algorithm Formulation, J. Atmos. Ocean. Tech., 16, 189–197, https://doi.org/10.1175/1520-0426(1999)016<0189:RTRREP>2.0.CO;2, 1999. a
Anagnostou, M. N., Kalogiros, J., Anagnostou, E. N., Tarolli, M., Papadopoulos, A., and Borga, M.: Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins, J. Hydrol., 394, 4–16, https://doi.org/10.1016/j.jhydrol.2010.06.026, 2010. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Barton, Y., Sideris, I. V., Germann, U., and Martius, O.: A method for real-time temporal disaggregation of blended radar–rain gauge precipitation fields, Meteorol. Appl., 27, e1843, https://doi.org/10.1002/met.1843, 2020. a, b
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016. a
Download
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Share