Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simulation-experiment-based assessment of retrievals of above-cloud temperature and water vapor using a hyperspectral infrared sounder
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Zhipeng Qu
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Observations-Based Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada
Related authors
Jing Feng and Yi Huang
Atmos. Chem. Phys., 21, 15493–15518, https://doi.org/10.5194/acp-21-15493-2021, https://doi.org/10.5194/acp-21-15493-2021, 2021
Short summary
Short summary
This study conducts a comprehensive analysis of thermodynamic fields above tropical cyclones. Using a synergistic retrieval method, we develop the first infrared hyperspectra-based dataset of collocated temperature and water vapor profiles above deep convective clouds. It discloses the unique impacts of convective overshoots on the tropical tropopause layer (TTL). Challenging conventional views, our study suggests that convective hydration may be limited by the radiative balance above cyclones.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025, https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared, and the likelihood of them differing by 10 W m2 defines the closure.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Mélissa Cholette, Cuong Nguyen, and Mengistu Wolde
EGUsphere, https://doi.org/10.5194/egusphere-2025-649, https://doi.org/10.5194/egusphere-2025-649, 2025
Short summary
Short summary
This study examines the impact of incorporating secondary ice production (SIP) parameterizations into high-resolution numerical weather prediction simulations for mid-latitude continental winter conditions. Aircraft in situ and remote sensing observations are used to evaluate the simulations. Results show that including SIP improves the representation of cloud and freezing rain properties, with its impact varying based on cloud regime, such as convective or stratiform.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 18, 471–485, https://doi.org/10.5194/amt-18-471-2025, https://doi.org/10.5194/amt-18-471-2025, 2025
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground–airborne synergy between the two instruments yielded optimal sounding results.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Short summary
This study estimated the effects of aerosols on GHGSat satellite methane retrieval and investigated the performance of simultaneously retrieving aerosol and methane information using a multi-angle viewing method. Results suggested that the performance of GHGSat methane retrieval improved when aerosols were considered, and the multi-angle viewing method is insensitive to the satellite angle setting. This performance assessment is useful for improving future GHGSat-like instruments.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 17, 2219–2233, https://doi.org/10.5194/amt-17-2219-2024, https://doi.org/10.5194/amt-17-2219-2024, 2024
Short summary
Short summary
We conducted a radiance closure experiment using a unique combination of two hyperspectral radiometers, one operating in the microwave and the other in the infrared. By comparing the measurements of the two hyperspectrometers to synthetic radiance simulated from collocated atmospheric profiles, we affirmed the proper performance of the two instruments and quantified their radiometric uncertainty for atmospheric sounding applications.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Jason N. S. Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech., 16, 4271–4288, https://doi.org/10.5194/amt-16-4271-2023, https://doi.org/10.5194/amt-16-4271-2023, 2023
Short summary
Short summary
Measurements from the EarthCARE satellite mission will be used to retrieve profiles of cloud and aerosol properties. These retrievals are combined with auxiliary information about surface properties and atmospheric state, e.g., temperature and water vapor. This information allows computation of 1D and 3D solar and thermal radiative transfer for small domains, which are compared with coincident radiometer observations to continually assess EarthCARE retrievals.
Han Huang and Yi Huang
Earth Syst. Sci. Data, 15, 3001–3021, https://doi.org/10.5194/essd-15-3001-2023, https://doi.org/10.5194/essd-15-3001-2023, 2023
Short summary
Short summary
We present a newly generated set of ERA5-based radiative kernels and compare them with other published kernels for the top of the atmosphere and surface radiation budgets. For both, the discrepancies in sensitivity values are generally of small magnitude, except for temperature kernels for the surface, likely due to improper treatment in the perturbation experiments used for kernel computation. The kernel bias is not a major cause of the inter-GCM (general circulation model) feedback spread.
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023, https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Short summary
This paper describes EarthCARE’s L2 product ACM-3D. It includes the scene construction algorithm (SCA) used to produce the indexes for reconstructing 3D atmospheric scene based on satellite nadir retrievals. It also provides the information about the buffer zone sizes of 3D assessment domains and the ranking scores for selecting the best 3D assessment domains. These output variables are needed to run 3D radiative transfer models for the radiative closure assessment of EarthCARE’s L2 retrievals.
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Yongjie Huang, Greg M. McFarquhar, Hugh Morrison, Mengistu Wolde, and Cuong Nguyen
Atmos. Chem. Phys., 22, 12287–12310, https://doi.org/10.5194/acp-22-12287-2022, https://doi.org/10.5194/acp-22-12287-2022, 2022
Short summary
Short summary
Secondary ice production (SIP) is an important physical phenomenon that results in an increase in the cloud ice particle concentration and can have a significant impact on the evolution of clouds. Here, idealized simulations of a tropical convective system were conducted. Agreement between the simulations and observations highlights the impacts of SIP on the maintenance of tropical convection in nature and the importance of including the modelling of SIP in numerical weather prediction models.
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Ming Xue, Hugh Morrison, Jason Milbrandt, Alexei V. Korolev, Yachao Hu, Zhipeng Qu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, and Ivan Heckman
Atmos. Chem. Phys., 22, 2365–2384, https://doi.org/10.5194/acp-22-2365-2022, https://doi.org/10.5194/acp-22-2365-2022, 2022
Short summary
Short summary
Numerous small ice crystals in tropical convective storms are difficult to detect and could be potentially hazardous for commercial aircraft. Previous numerical simulations failed to reproduce this phenomenon and hypothesized that key microphysical processes are still lacking in current models to realistically simulate the phenomenon. This study uses numerical experiments to confirm the dominant role of secondary ice production in the formation of these large numbers of small ice crystals.
Jing Feng and Yi Huang
Atmos. Chem. Phys., 21, 15493–15518, https://doi.org/10.5194/acp-21-15493-2021, https://doi.org/10.5194/acp-21-15493-2021, 2021
Short summary
Short summary
This study conducts a comprehensive analysis of thermodynamic fields above tropical cyclones. Using a synergistic retrieval method, we develop the first infrared hyperspectra-based dataset of collocated temperature and water vapor profiles above deep convective clouds. It discloses the unique impacts of convective overshoots on the tropical tropopause layer (TTL). Challenging conventional views, our study suggests that convective hydration may be limited by the radiative balance above cyclones.
Cited articles
Aumann, H. H. and Ruzmaikin, A.: Frequency of deep convective clouds in the tropical zone from 10 years of AIRS data, Atmos. Chem. Phys., 13, 10795–10806, https://doi.org/10.5194/acp-13-10795-2013, 2013. a
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra., 146, 123–139, 2014. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and Van Den Bosch, J.: MODTRAN® 6: A major upgrade of the
MODTRAN® radiative transfer code, in: 2014 6th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), 24–27 June 2014, Lausanne, Switzerland, 1–4, IEEE, 2014. a
Biondi, R., Randel, W. J., Ho, S.-P., Neubert, T., and Syndergaard, S.: Thermal structure of intense convective clouds derived from GPS radio occultations, Atmos. Chem. Phys., 12, 5309–5318, https://doi.org/10.5194/acp-12-5309-2012, 2012. a
Blanchet, J.-P., Royer, A., Châteauneuf, F., Bouzid, Y., Blanchard, Y.,
Hamel, J.-F., de Lafontaine, J., Gauthier, P., O'Neill, N. T., Pancrati, O., and Garand, L.: TICFIRE: a far infrared payload to monitor the evolution of thin ice clouds, in: Sensors, Systems, and Next-Generation Satellites XV, vol. 8176, 81761K, International Society for Optics and Photonics, Prague, Czech Republic, 2011. a
Bloom, H. J.: The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing, in: IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), 9–13 July 2001, Sydney, NSW, Australia, vol. 3, 1341–1343, IEEE, 2001. a
Blumstein, D., Chalon, G., Carlier, T., Buil, C., Hebert, P., Maciaszek, T.,
Ponce, G., Phulpin, T., Tournier, B., Simeoni, D., Astruc, P., Clauss, A., Kayal, G., and Jegou, R.: IASI instrument: Technical overview and measured performances, in: Infrared Spaceborne Remote Sensing XII, vol. 5543, 196–207, International Society for Optics and Photonics, Denver, Colorado, USA, 2004. a
Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E.,
Osterman, G., Steck, T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P., Rinsland, C., Gunson, M., and Beer, R.:
Tropospheric emission spectrometer: Retrieval method and error analysis, IEEE T. Geosci. Remote, 44, 1297–1307, 2006. a
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C., Blaisdell, J., Chen, L., Fetzer, E. J., Goldberg, M., Gautirt, C., Granger, S.., Hannon, S., Irion., F. W., Karkar, R., Kalnay, E., Lambrigtsen, B. H., Lee, S., Marshall, J. L., Mcmillan, W. W., Mcmillan, L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wold, W., and Zhou, L.: AIRS: Improving weather forecasting and providing new data on greenhouse gases, B. Am. Meteorol. Soc., 87, 911–926, https://doi.org/10.1175/BAMS-87-7-911, 2006. a
Corti, T., Luo, B., De Reus, M., Brunner, D., Cairo, F., Mahoney, M., Martucci, G., Matthey, R., Mitev, V., dos Santos, F. H., Schiller, C., Shur, G., Sitnikov, N. M., Spelten, N., Vössing, H. J., Borrmann, S., and Peter, T.: Unprecedented evidence for deep convection hydrating the tropical stratosphere, Geophys. Res. Lett., 35, L10810, https://doi.org/10.1029/2008GL033641, 2008. a
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and
Staniforth, A.: The operational CMC–MRB global environmental multiscale
(GEM) model. Part I: Design considerations and formulation, Mon. Weather
Rev., 126, 1373–1395, 1998. a
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017. a
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res.-Atmos., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008. a
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res.-Atmos., 115, D00H29, https://doi.org/10.1029/2009JD012346, 2010. a
DeSouza-Machado, S., Strow, L. L., Tangborn, A., Huang, X., Chen, X., Liu, X., Wu, W., and Yang, Q.: Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm, Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018, 2018. a, b, c, d
Dessler, A., Schoeberl, M., Wang, T., Davis, S., and Rosenlof, K.:
Stratospheric water vapor feedback, P. Natl. Acad. Sci. USA, 110, 18087–18091, 2013. a
Feng, J.: A-Train observation of thermodynamic conditions above tropical cyclones, Mendeley Data [data set], V1, https://doi.org/10.17632/fy3gg7ch42.1, 2021. a
Gambacorta, A., Barnet, C., Wolf, W., King, T., Nalli, N., Wilson, M.,
Soulliard, L., Zang, K., Xiong, X., and Goldberg, M.: The NOAA operational
hyper spectral retrieval algorithm: a cross-comparison among the CrIS, IASI
and AIRS processing system, in: 19th International TOVS Study Conference, 28 March 2014, Jeju Island, Korea, 2014. a
Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté,
J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.:
Staggered vertical discretization of the Canadian Environmental Multiscale
(GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon.
Weather Rev., 142, 1183–1196, 2014. a
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size
distributions and pressure-dependent terminal velocities from in situ
observations at temperatures from 0∘ to −8 6∘C, J. Atmos. Sci., 70, 4123–4154, 2013. a
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., Aminou, D., and Blythe, P.: METEOSAT THIRD GENERATION (MTG): Continuation and Innovation of Observations from Geostationary Orbit, B. Am. Meteorol. Soc., 102, 1–71, 2021. a
Huang, Y., Leroy, S. S., and Anderson, J. G.: Determining longwave forcing and feedback using infrared spectra and GNSS radio occultation, J.
Climate, 23, 6027–6035, 2010. a
Hurst, D. F., Oltmans, S. J., Vömel, H., Rosenlof, K. H., Davis, S. M.,
Ray, E. A., Hall, E. G., and Jordan, A. F.: Stratospheric water vapor trends
over Boulder, Colorado: Analysis of the 30 year Boulder record, J.
Geophys. Res.-Atmos., 116, D02306, https://doi.org/10.1029/2010JD015065, 2011. a
Irion, F. W., Kahn, B. H., Schreier, M. M., Fetzer, E. J., Fishbein, E., Fu, D., Kalmus, P., Wilson, R. C., Wong, S., and Yue, Q.: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS, Atmos. Meas. Tech., 11, 971–995, https://doi.org/10.5194/amt-11-971-2018, 2018. a, b, c, d
Jiang, B., Lin, W., Hu, C., and Wu, Y.: Tropical cyclones impact on tropopause and the lower stratosphere vapour based on satellite data, Atmos. Sci. Lett., 21, e1006, https://doi.org/10.1002/asl.1006, 2020. a
Kirk-Davidoff, D. B., Hintsa, E. J., Anderson, J. G., and Keith, D. W.: The
effect of climate change on ozone depletion through changes in stratospheric
water vapour, Nature, 402, 399–401, 1999. a
Kley, D.: SPARC assessment of upper tropospheric and stratospheric water
vapor, WCRP-113, WMO/TD No. 1043S, SPARC Report No. 2, Stratospheric Processes and Their Role in Climate (SPARC) project, World Meteorological Organization, Paris, France, 2000. a
Li, Z., Li, J., Wang, P., Lim, A., Li, J., Schmit, T. J., Atlas, R., Boukabara, S.-A., and Hoffman, R. N.: Value-added impact of geostationary hyperspectral infrared sounders on local severe storm forecasts—Via a quick regional OSSE, Adv. Atmos. Sci., 35, 1217–1230, 2018. a
Livesey, N., Read, W., Wagner, P., Froidevaux, L., Lambert, A., Manney, G.,
Millán Valle, L., Pumphrey, H., Santee, M., Schwartz, M., Wang, S., Fuller, R., Jarnot, R., and Knosp, B.: Version 4.2 x Level 2 data quality and description document, JPL D-33509 Rev. C, available at: https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf (last access: 25 July 2021), 2017. a
McClatchey, R. A.: Optical properties of the atmosphere, No. 411, Air Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force, Bedford, Massachusetts, USA, 1972. a
Milbrandt, J. and Yau, M.: A multimoment bulk microphysics parameterization.
Part I: Analysis of the role of the spectral shape parameter, J. Atmos. Sci., 62, 3051–3064, 2005. a
Okamoto, K., Owada, H., Fujita, T., Kazumori, M., Otsuka, M., Seko, H., Ota,
Y., Uekiyo, N., Ishimoto, H., Hayashi, M., Ishida, H., Ando, A., Takahashi, M., Bessho, K., and Yokota, H.: Assessment of the potential impact of a hyperspectral infrared sounder on the Himawari follow-on geostationary satellite, SOLA, 16, 162–168, https://doi.org/10.2151/sola.2020-028, 2020. a
Oltmans, S. J., Vömel, H., Hofmann, D. J., Rosenlof, K. H., and Kley, D.:
The increase in stratospheric water vapor from balloonborne, frostpoint
hygrometer measurements at Washington, DC, and Boulder, Colorado,
Geophys. Res. Lett., 27, 3453–3456, 2000. a
Palchetti, L., Brindley, H., Bantges, R., Buehler, S., Camy-Peyret, C., Carli, B., Cortesi, U., Del Bianco, S., Di Natale, G., Dinelli, B. M., Feldman, D., Huang, X. L., C.-Labonnote, L., Libois, Q., Maestri, T., Mlynczak, M. G., Murray, J. E., Oetjen, H., Ridolfi, M., Riese, M., Russell, J., Saunders, R., and Serio, C.: unique
far-infrared satellite observations to better understand how Earth radiates
energy to space, B. Am. Meteorol. Soc., 1, 1–52,
2020. a
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A.,
Riédi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and
examples from Terra, IEEE T. Geosci. Remote, 41, 459–473, 2003. a
Qu, Z., Huang, Y., Vaillancourt, P. A., Cole, J. N. S., Milbrandt, J. A., Yau, M.-K., Walker, K., and de Grandpré, J.: Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model, Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020, 2020. a
Randel, W. J., Wu, F., Oltmans, S. J., Rosenlof, K., and Nedoluha, G. E.:
Interannual changes of stratospheric water vapor and correlations with
tropical tropopause temperatures, J. Atmos. Sci., 61,
2133–2148, 2004. a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, World Scientific Publishing, https://doi.org/10.1142/3171, 2000. a, b, c
Schiller, C., Grooß, J.-U., Konopka, P., Plöger, F., Silva dos Santos, F. H., and Spelten, N.: Hydration and dehydration at the tropical tropopause, Atmos. Chem. Phys., 9, 9647–9660, https://doi.org/10.5194/acp-9-9647-2009, 2009. a
Schmit, T. J., Li, J., Ackerman, S. A., and Gurka, J. J.: High-spectral-and
high-temporal-resolution infrared measurements from geostationary orbit,
J. Atmos. Ocean. Tech., 26, 2273–2292, 2009. a
Schoeberl, M., Jensen, E., Pfister, L., Ueyama, R., Wang, T., Selkirk, H.,
Avery, M., Thornberry, T., and Dessler, A.: Water vapor, clouds, and
saturation in the tropical tropopause layer, J. Geophys. Res.-Atmos., 124, 3984–4003, 2019. a
Sherwood, S. C., Chae, J.-H., Minnis, P., and McGill, M.: Underestimation of
deep convective cloud tops by thermal imagery, Geophys. Res. Lett.,
31, L11102, https://doi.org/10.1029/2004GL019699, 2004. a
Shindell, D. T.: Climate and ozone response to increased stratospheric water
vapor, Geophys. Res. Lett., 28, 1551–1554, 2001. a
Smith, J. B., Wilmouth, D. M., Bedka, K. M., Bowman, K. P., Homeyer, C. R.,
Dykema, J. A., Sargent, M. R., Clapp, C. E., Leroy, S. S., Sayres, D. S., Dean-Day, J. M., Paul, B. T., and Anderson, J. G.: A case study of convectively sourced water vapor observed in the
overworld stratosphere over the United States, J. Geophys.
Res.-Atmos., 122, 9529–9554, 2017. a
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, 2010. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marchand, R.: CloudSat mission: Performance and early science after the first year of operation, J. Geophys. Res.-Atmos., 113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a
Susskind, J., Barnet, C. D., and Blaisdell, J. M.: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE T. Geosci. Remote, 41, 390–409, 2003. a
Tourville, N., Stephens, G., DeMaria, M., and Vane, D.: Remote sensing of
tropical cyclones: Observations from CloudSat and A-Train profilers, B. Am. Meteorol. Soc., 96, 609–622, 2015. a
Ueyama, R., Jensen, E. J., and Pfister, L.: Convective influence on the
humidity and clouds in the tropical tropopause layer during boreal summer,
J. Geophys. Res.-Atmos., 123, 7576–7593, 2018. a
Wang, X. and Jiang, H.: A 13-year global climatology of tropical cyclone
warm-core structures from AIRS data, Mon. Weather Rev., 147, 773–790, 2019. a
Winker, D. M., Pelon, J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.. The CALIPSO Mission, B. Am. Meteorol. Soc., 91, 1211–1230, https://doi.org/10.1175/2010BAMS3009.1, 2010. a
Yu, W., Dessler, A. E., Park, M., and Jensen, E. J.: Influence of convection on stratospheric water vapor in the North American monsoon region, Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, 2020. a
Short summary
It is challenging to measure the atmospheric conditions above convective storms. In this study, a method of retrieving thermodynamic variables above convective storms using a combination of satellite-based observations from a hyperspectral infrared sounder and active sensors is developed. We find that this method captures the spatial distributions of thermodynamic anomalies above convective clouds well. This method is potentially applicable to observations from current and future satellites.
It is challenging to measure the atmospheric conditions above convective storms. In this study,...