Articles | Volume 15, issue 1
https://doi.org/10.5194/amt-15-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New sampling strategy mitigates a solar-geometry-induced bias in sub-kilometre vapour scaling statistics derived from imaging spectroscopy
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 90095, USA
David R. Thompson
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Marcin J. Kurowski
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Matthew D. Lebsock
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Related authors
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020, https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025, https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Short summary
Key to the success of future satellite missions is understanding snowmelt in our warming climate, as this has implications for nearly 2 billion people. An obstacle is that an artifact, called the hook, is often mistaken for soot or dust. Instead, it is caused by three amplifying effects: (1) background reflectance that is too dark, (2) an assumption of level terrain, and (3) differences in optical constants of ice. Sensor calibration and directional effects may also contribute. Solutions are presented.
Riley Duren, Daniel Cusworth, Alana Ayasse, Kate Howell, Alex Diamond, Tia Scarpelli, Jinsol Kim, Kelly O'neill, Judy Lai-Norling, Andrew Thorpe, Sander R. Zandbergen, Lucas Shaw, Mark Keremedjiev, Jeff Guido, Paul Giuliano, Malkam Goldstein, Ravi Nallapu, Geert Barentsen, David R. Thompson, Keely Roth, Daniel Jensen, Michael Eastwood, Frances Reuland, Taylor Adams, Adam Brandt, Eric A. Kort, James Mason, and Robert O. Green
EGUsphere, https://doi.org/10.5194/egusphere-2025-2275, https://doi.org/10.5194/egusphere-2025-2275, 2025
Short summary
Short summary
We describe the Carbon Mapper emissions monitoring system including methane and carbon dioxide observations from the constellation of Tanager hyperspectral satellites, a global monitoring strategy optimized for enabling mitigation impact at the scale of individual facilities, and a data platform that delivers timely and transparent information for diverse stakeholders. We present early findings from Tanager-1 including the use of our data to locate and repair a leaking oil and gas pipeline.
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322, https://doi.org/10.5194/egusphere-2025-322, 2025
Short summary
Short summary
This study explores the potential of a hypothetical spaceborne radar to observe water vapor within clouds.
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025, https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Short summary
A new type of Earth-observing satellite is measuring reflected sunlight in all its colors. These measurements can be used to characterize snow properties, which give us important information about climate change. In our work, we emphasize the difficulties of obtaining these properties from rough mountainous regions and present a solution to the problem. Our research was inspired by the growing number of new satellite technologies and the increasing challenges associated with climate change.
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618, https://doi.org/10.5194/egusphere-2025-618, 2025
Short summary
Short summary
Current knowledge of the link between clouds and climate is limited by lack of observations of the drop size distribution (DSD) within clouds, especially for the smallest drops. We demonstrate a method of retrieving DSDs down to small drop sizes using observations of drizzling marine layer clouds captured by the CloudCube millimeter-wave Doppler radar. We compare the shape of the observed spectra to theoretical expectations of radar echoes to solve for DSDs at each time and elevation.
Marcin J. Kurowski, Matthew D. Lebsock, and Kevin M. Smalley
EGUsphere, https://doi.org/10.5194/egusphere-2025-714, https://doi.org/10.5194/egusphere-2025-714, 2025
Short summary
Short summary
This study explores how clouds respond to pollution throughout the day using high-resolution simulations. Polluted clouds show stronger daily changes: thicker clouds at night and in the morning but faster thinning in the afternoon. Pollution reduces rainfall but enhances drying, deepening the cloud layer. While the pollution initially brightens clouds, the daily cycle of cloudiness slightly reduces this brightening effect.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
María Gonçalves Ageitos, Vincenzo Obiso, Ron L. Miller, Oriol Jorba, Martina Klose, Matt Dawson, Yves Balkanski, Jan Perlwitz, Sara Basart, Enza Di Tomaso, Jerónimo Escribano, Francesca Macchia, Gilbert Montané, Natalie M. Mahowald, Robert O. Green, David R. Thompson, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023, https://doi.org/10.5194/acp-23-8623-2023, 2023
Short summary
Short summary
Dust aerosols affect our climate differently depending on their mineral composition. We include dust mineralogy in an atmospheric model considering two existing soil maps, which still have large associated uncertainties. The soil data and the distribution of the minerals in different aerosol sizes are key to our model performance. We find significant regional variations in climate-relevant variables, which supports including mineralogy in our current models and the need for improved soil maps.
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023, https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev., 16, 1909–1924, https://doi.org/10.5194/gmd-16-1909-2023, https://doi.org/10.5194/gmd-16-1909-2023, 2023
Short summary
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Longlei Li, Natalie M. Mahowald, Ron L. Miller, Carlos Pérez García-Pando, Martina Klose, Douglas S. Hamilton, Maria Gonçalves Ageitos, Paul Ginoux, Yves Balkanski, Robert O. Green, Olga Kalashnikova, Jasper F. Kok, Vincenzo Obiso, David Paynter, and David R. Thompson
Atmos. Chem. Phys., 21, 3973–4005, https://doi.org/10.5194/acp-21-3973-2021, https://doi.org/10.5194/acp-21-3973-2021, 2021
Short summary
Short summary
For the first time, this study quantifies the range of the dust direct radiative effect due to uncertainty in the soil mineral abundance using all currently available information. We show that the majority of the estimated direct radiative effect range is due to uncertainty in the simulated mass fractions of iron oxides and thus their soil abundance, which is independent of the model employed. We therefore prove the necessity of considering mineralogy for understanding dust–climate interactions.
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020, https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Short summary
We demonstrate an onboard cloud-screening approach to significantly reduce the amount of cloud-contaminated data transmitted from orbit. We have produced location-specific models that improve performance by taking into account the unique cloud statistics in different latitudes. We have shown that screening clouds based on their location or surface type will improve the ability for a cloud-screening tool to improve the volume of usable science data.
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech., 13, 5193–5205, https://doi.org/10.5194/amt-13-5193-2020, https://doi.org/10.5194/amt-13-5193-2020, 2020
Short summary
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of total column water vapor from a spaceborne platform.
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020, https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
Short summary
We previously combined CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar data and reflected-sunlight measurements from OCO-2 (Orbiting Carbon Observatory 2) for information about low clouds over oceans. The satellites are no longer formation-flying, so this work is a step towards getting new information about these clouds using only OCO-2. We can rapidly and accurately identify liquid oceanic clouds and obtain their height better than a widely used passive sensor.
Cited articles
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011.
Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, K. R.,
Loewenstein, M., Proffitt, M. H., and Gary, B. L.: Stratospheric horizontal
wavenumber spectra of winds, potential temperature, and atmospheric tracers
observed by high-altitude aircraft, J. Geophys. Res.-Atmos., 101,
9441–9470, https://doi.org/10.1029/95JD03835, 1996.
Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B., Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., and Skofronick-Jackson, G.: Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign, Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, 2021.
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den
Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,
in: Proceedings Volume 9088, Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XX, edited by: Velez-Reyes, M. and Kruse, F. A., SPIE, Baltimore, MD, USA, 90880H, 2014.
Berk, A., Conforti, P., and Hawes, F.: An accelerated line-by-line option for
MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm−1 bins and pre-computed line tails, in: Proceedings Volume 9472,
Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XXI, edited by: Velez-Reyes, M. and Kruse, F. A., SPIE, Baltimore, MD, USA, 947217, 2015.
Boffetta, G., De Lillo, F., Mazzino, A., and Musacchio, S.: Bolgiano scale in
confined Rayleigh–Taylor turbulence, J. Fluid Mech., 690, 426–440,
https://doi.org/10.1017/jfm.2011.446, 2012.
Bolgiano, R.: Turbulent spectra in a stably stratified atmosphere, J.
Geophys. Res., 64, 2226–2229, https://doi.org/10.1029/JZ064i012p02226, 1959.
Bradley, C. L., Thingvold, E., Moore, L. B., Haag, J. M., Raouf, N. A.,
Mouroulis, P., and Green, R. O.: Optical design of the Earth Surface Mineral
Dust Source Investigation (EMIT) imaging spectrometer, in: Imaging
Spectrometry XXIV: Applications, Sensors, and Processing, edited by:
Mouroulis, P. and Ientilucci, E. J., SPIE Optical Engineering + Applications, online only, p. 1, 2020.
Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C.,
Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng,
C.-H., Neggers, R. A. J., Siebesma, A. P., and Stevens, B.: Large-eddy
simulation of the diurnal cycle of shallow cumulus convection over land, Q.
J. R. Meteorol. Soc., 128, 1075–1093, https://doi.org/10.1256/003590002320373210,
2002.
Candela, L., Formaro, R., Guarini, R., Loizzo, R., Longo, F., and Varacalli,
G.: The PRISMA mission, in: 2016 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), IEEE, Beijing, China, 10–15 July 2016,
253–256, 2016.
Carbajal Henken, C. K., Diedrich, H., Preusker, R., and Fischer, J.: MERIS
full-resolution total column water vapor: Observing horizontal convective
rolls, Geophys. Res. Lett., 42, 10074–10081, https://doi.org/10.1002/2015GL066650,
2015.
Cho, J. Y. N., Zhu, Y., Newell, R. E., Anderson, B. E., Barrick, J. D.,
Gregory, G. L., Sachse, G. W., Carroll, M. A., and Albercook, G. M.:
Horizontal wavenumber spectra of winds, temperature, and trace gases during
the Pacific Exploratory Missions: 1. Climatology, J. Geophys. Res.-Atmos.,
104, 5697–5716, https://doi.org/10.1029/98JD01825, 1999.
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces, Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, 2015.
Diner, D. J., Boland, S. W., Brauer, M., Bruegge, C., Burke, K. A., Chipman,
R., Di Girolamo, L., Garay, M. J., Hasheminassab, S., and Hyer, E.: Advances
in multiangle satellite remote sensing of speciated airborne particulate
matter and association with adverse health effects: from MISR to MAIA, J.
Appl. Remote Sens., 16, 042603,
https://doi.org/10.1117/1.JRS.12.042603, 2018.
Dorrestijn, J., Kahn, B. H., Teixeira, J., and Irion, F. W.: Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach, Atmos. Meas. Tech., 11, 2717–2733, https://doi.org/10.5194/amt-11-2717-2018, 2018.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon,
F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A.,
Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's
Optical High-Resolution Mission for GMES Operational Services, Remote Sens.
Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Emde, C., Buras, R., and Mayer, B.: ALIS: An efficient method to compute high
spectral resolution polarized solar radiances using the Monte Carlo
approach, J. Quant. Spectrosc. Radiat. Transf., 112, 1622–1631,
https://doi.org/10.1016/j.jqsrt.2011.03.018, 2011.
Evans, K. F.: The Spherical Harmonics Discrete Ordinate Method for
Three-Dimensional Atmospheric Radiative Transfer, J. Atmos. Sci., 55,
429–446, https://doi.org/10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2, 1998.
Fischer, L., Kiemle, C., and Craig, G. C.: Height-resolved variability of
midlatitude tropospheric water vapor measured by an airborne lidar, Geophys.
Res. Lett., 39, L06803, https://doi.org/10.1029/2011GL050621, 2012.
Fischer, L., Craig, G. C., and Kiemle, C.: Horizontal structure function and
vertical correlation analysis of mesoscale water vapor variability observed
by airborne lidar, J. Geophys. Res.-Atmos., 118, 7579–7590,
https://doi.org/10.1002/jgrd.50588, 2013.
Gage, K. S. and Nastrom, G. D.: On the spectrum of atmospheric velocity
fluctuations seen by MST/ST radar and their interpretation, Radio Sci.,
20, 1339–1347, https://doi.org/10.1029/RS020i006p01339, 1985.
Garay, M. J., Davis, A. B., and Diner, D. J.: Tomographic reconstruction of
an aerosol plume using passive multiangle observations from the MISR
satellite instrument, Geophys. Res. Lett., 43, 12590–12596, https://doi.org/10.1002/2016GL071479,
2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Golaz, J.-C., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for
Boundary Layer Clouds. Part I: Method and Model Description, J. Atmos. Sci.,
59, 3540–3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2, 2002.
Green, R. O. and Thompson, D. R.: An Earth Science Imaging Spectroscopy
Mission: The Earth Surface Mineral Dust Source Investigation (EMIT), in:
IGARSS 2020 – 2020 IEEE International Geoscience and Remote Sensing
Symposium, online only, 26 September–2 October 2020,
IEEE, 6262–6265, 2020.
Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.:
Surface Solar Irradiance in Continental Shallow Cumulus Fields: Observations
and Large-Eddy Simulation, J. Atmos. Sci., 77, 1065–1080,
https://doi.org/10.1175/JAS-D-19-0261.1, 2019.
Grossi, M., Valks, P., Loyola, D., Aberle, B., Slijkhuis, S., Wagner, T., Beirle, S., and Lang, R.: Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B, Atmos. Meas. Tech., 8, 1111–1133, https://doi.org/10.5194/amt-8-1111-2015, 2015.
Kahn, B. H. and Teixeira, J.: A Global Climatology of Temperature and Water
Vapor Variance Scaling from the Atmospheric Infrared Sounder, J. Climate,
22, 5558–5576, https://doi.org/10.1175/2009JCLI2934.1, 2009.
Kahn, B. H., Teixeira, J., Fetzer, E. J., Gettelman, A., Hristova-Veleva, S.
M., Huang, X., Kochanski, A. K., Köhler, M., Krueger, S. K., Wood, R., and Zhao, M.: Temperature and Water Vapor Variance Scaling in Global Models:
Comparisons to Satellite and Aircraft Data, J. Atmos. Sci., 68,
2156–2168, https://doi.org/10.1175/2011JAS3737.1, 2011.
Krutz, D., Müller, R., Knodt, U., Günther, B., Walter, I.,
Sebastian, I., Säuberlich, T., Reulke, R., Carmona, E., Eckardt, A.,
Venus, H., Fischer, C., Zender, B., Arloth, S., Lieder, M., Neidhardt, M.,
Grote, U., Schrandt, F., Gelmi, S., and Wojtkowiak, A.: The Instrument Design
of the DLR Earth Sensing Imaging Spectrometer (DESIS), Sensors, 19, 1622,
https://doi.org/10.3390/s19071622, 2019.
Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., van Bokhoven, L. J. A.,
Akkermans, R. A. D., and Verzicco, R.: Numerical and experimental
investigation of structure-function scaling in turbulent Rayleigh-Bénard
convection, Phys. Rev. E, 77, 016302, https://doi.org/10.1103/PhysRevE.77.016302,
2008.
Kurowski, M. J., Grabowski, W. W., and Smolarkiewicz, P. K.: Anelastic and
Compressible Simulation of Moist Dynamics at Planetary Scales, J. Atmos.
Sci., 72, 3975–3995, https://doi.org/10.1175/JAS-D-15-0107.1, 2015.
Kurowski, M. J., Grabowski, W. W., Suselj, K., and Teixeira, J.: The Strong
Impact of Weak Horizontal Convergence on Continental Shallow Convection, J.
Atmos. Sci., 77, 3119–3137, https://doi.org/10.1175/JAS-D-19-0351.1, 2020.
Lovejoy, S., Schertzer, D., and Tuck, A. F.: Fractal aircraft trajectories
and nonclassical turbulent exponents, Phys. Rev. E, 70, 036306,
https://doi.org/10.1103/PhysRevE.70.036306, 2004.
Lovejoy, S., Tuck, A. F., Hovde, S. J., and Schertzer, D.: Is isotropic
turbulence relevant in the atmosphere?, Geophys. Res. Lett., 34, L15802,
https://doi.org/10.1029/2007GL029359, 2007.
Massie, S. T., Cronk, H., Merrelli, A., O'Dell, C., Schmidt, K. S., Chen, H., and Baker, D.: Analysis of 3D cloud effects in OCO-2 XCO2 retrievals, Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, 2021.
Matheou, G. and Chung, D.: Large-Eddy Simulation of Stratified Turbulence.
Part II: Application of the Stretched-Vortex Model to the Atmospheric
Boundary Layer, J. Atmos. Sci., 71, 4439–4460,
https://doi.org/10.1175/JAS-D-13-0306.1, 2014.
Nelson, R. R., Crisp, D., Ott, L. E., and O'Dell, C. W.: High-accuracy
measurements of total column water vapor from the Orbiting Carbon
Observatory-2, Geophys. Res. Lett., 43, 12261–12269,
https://doi.org/10.1002/2016GL071200, 2016.
Noël, S., Buchwitz, M., and Burrows, J. P.: First retrieval of global water vapour column amounts from SCIAMACHY measurements, Atmos. Chem. Phys., 4, 111–125, https://doi.org/10.5194/acp-4-111-2004, 2004.
Obukhov, A. M.: On the influence of buoyancy forces on the structure of the
temperature field in a turbulent flow, Dokl. Acad. Nauk. SSST., 125, p. 1246, 1959.
Perraud, E., Couvreux, F., Malardel, S., Lac, C., Masson, V., and Thouron,
O.: Evaluation of Statistical Distributions for the Parametrization of
Subgrid Boundary-Layer Clouds, Bound.-Lay. Meteorol., 140, 263–294,
https://doi.org/10.1007/s10546-011-9607-3, 2011.
Pinel, J., Lovejoy, S., Schertzer, D., and Tuck, A. F.: Joint
horizontal-vertical anisotropic scaling, isobaric and isoheight wind
statistics from aircraft data, Geophys. Res. Lett., 39, L11803,
https://doi.org/10.1029/2012GL051689, 2012.
Pressel, K. G. and Collins, W. D.: First-Order Structure Function Analysis
of Statistical Scale Invariance in the AIRS-Observed Water Vapor Field, J.
Climate, 25, 5538–5555, https://doi.org/10.1175/JCLI-D-11-00374.1, 2012.
Preusker, R., Carbajal Henken, C., and Fischer, J.: Retrieval of Daytime
Total Column Water Vapour from OLCI Measurements over Land Surfaces, Remote
Sens., 13, 932, https://doi.org/10.3390/rs13050932, 2021.
Prusa, J. M., Smolarkiewicz, P. K., and Wyszogrodzki, A. A.: EULAG, a
computational model for multiscale flows, Comput. Fluids, 37, 1193–1207,
https://doi.org/10.1016/j.compfluid.2007.12.001, 2008.
Rast, M., Ananasso, C., Bach, H., Ben-Dor, E., Chabrillat, S., Colombo, R.,
Del Bello, U., Feret, J., Giardino, C., Green, R., Guanter, L., Marsh, S.,
Nieke, J., CCH, O., Rum, G., Schaepman, M., Schlerf, M., Skidmore, A., and
Strobl, P.: Copernicus hyperspectral imaging mission for the environment:
Mission requirements document version 2.1, European Space Agency, Frascati, Italy, 2019.
Richardson, M. T., Thompson, D. R., Kurowski, M. J., and Lebsock, M. D.: Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy, Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, 2021a.
Richardson, M. T., Thompson, D. R., Kurowski, M. J., and Lebsock, M. D.: Supporting data for boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy, Zenodo [data set], https://doi.org/10.5281/zenodo.5717263, 2021b.
Schemann, V., Stevens, B., Grützun, V., and Quaas, J.: Scale Dependency
of Total Water Variance and Its Implication for Cloud Parameterizations, J.
Atmos. Sci., 70, 3615–3630, https://doi.org/10.1175/JAS-D-13-09.1, 2013.
Selz, T., Fischer, L., and Craig, G. C.: Structure Function Analysis of Water
Vapor Simulated with a Convection-Permitting Model and Comparison to
Airborne Lidar Observations, J. Atmos. Sci., 74, 1201–1210,
https://doi.org/10.1175/JAS-D-16-0160.1, 2017.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A Large Eddy Simulation
Intercomparison Study of Shallow Cumulus Convection, J. Atmos. Sci., 60,
1201–1219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.
Skamarock, W. C., Park, S.-H., Klemp, J. B., and Snyder, C.: Atmospheric
Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic
Simulations, J. Atmos. Sci., 71, 4369–4381,
https://doi.org/10.1175/JAS-D-14-0114.1, 2014.
Sommeria, G. and Deardorff, J. W.: Subgrid-Scale Condensation in Models of
Nonprecipitating Clouds, J. Atmos. Sci., 34, 344–355,
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2,
1977.
Szczodrak, M., Austin, P. H., and Krummel, P. B.: Variability of Optical
Depth and Effective Radius in Marine Stratocumulus Clouds, J. Atmos. Sci.,
58, 2912–2926, https://doi.org/10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2, 2001.
Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao, B.-C., and
Eastwood, M. L.: Optimal estimation for imaging spectrometer atmospheric
correction, Remote Sens. Environ., 216, 355–373,
https://doi.org/10.1016/j.rse.2018.07.003, 2018.
Thompson, D. R., Cawse-Nicholson, K., Erickson, Z., Fichot, C. G.,
Frankenberg, C., Gao, B.-C., Gierach, M. M., Green, R. O., Jensen, D.,
Natraj, V., and Thompson, A.: A unified approach to estimate land and water
reflectances with uncertainties for coastal imaging spectroscopy, Remote
Sens. Environ., 231, 111198, https://doi.org/10.1016/j.rse.2019.05.017, 2019.
Thompson, D. R., Kahn, B. H., Brodrick, P. G., Lebsock, M. D., Richardson, M., and Green, R. O.: Spectroscopic imaging of sub-kilometer spatial structure in lower-tropospheric water vapor, Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, 2021.
Ungermann, J., Blank, J., Dick, M., Ebersoldt, A., Friedl-Vallon, F., Giez, A., Guggenmoser, T., Höpfner, M., Jurkat, T., Kaufmann, M., Kaufmann, S., Kleinert, A., Krämer, M., Latzko, T., Oelhaf, H., Olchewski, F., Preusse, P., Rolf, C., Schillings, J., Suminska-Ebersoldt, O., Tan, V., Thomas, N., Voigt, C., Zahn, A., Zöger, M., and Riese, M.: Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra, Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, 2015.
vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A.
S., Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M.,
Kogan, Y., Lewellen, D. C., Mechem, D., Nakamura, K., Noda, A., Shipway, B.
J., Slawinska, J., Wang, S., and Wyszogrodzki, A.: Controls on precipitation
and cloudiness in simulations of trade-wind cumulus as observed during RICO,
J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056, 2011.
Várnai, T. and Marshak, A.: MODIS observations of enhanced clear sky
reflectance near clouds, Geophys. Res. Lett., 36, L06807,
https://doi.org/10.1029/2008GL037089, 2009.
Wroblewski, D. E., Coté, O. R., Hacker, J. M., and Dobosy, R. J.:
Velocity and Temperature Structure Functions in the Upper Troposphere and
Lower Stratosphere from High-Resolution Aircraft Measurements, J. Atmos.
Sci., 67, 1157–1170, https://doi.org/10.1175/2009JAS3108.1, 2010.
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field...