Articles | Volume 15, issue 6
https://doi.org/10.5194/amt-15-1779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-1779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network
Marie Bouillon
CORRESPONDING AUTHOR
LATMOS, IPSL, Sorbonne Université/UVSQ/CNRS, Paris, France
Sarah Safieddine
LATMOS, IPSL, Sorbonne Université/UVSQ/CNRS, Paris, France
Simon Whitburn
Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
(SQUARES), Université Livre de Bruxelles (ULB), Brussels, Belgium
Lieven Clarisse
Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
(SQUARES), Université Livre de Bruxelles (ULB), Brussels, Belgium
Filipe Aires
LERMA, Observatoire de Paris/CNRS, Paris, France
Victor Pellet
LERMA, Observatoire de Paris/CNRS, Paris, France
Olivier Lezeaux
SPASCIA, Ramonville-Saint-Agne, France
Noëlle A. Scott
Laboratoire de Météorologie Dynamique, IPSL/CNRS/École
Polytechnique/Université Paris-Saclay, Palaiseau, France
Marie Doutriaux-Boucher
EUMETSAT, Darmstadt, Germany
Cathy Clerbaux
LATMOS, IPSL, Sorbonne Université/UVSQ/CNRS, Paris, France
Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing
(SQUARES), Université Livre de Bruxelles (ULB), Brussels, Belgium
Related authors
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Lorenzo Fabris, Nicolas Theys, Lieven Clarisse, Bruno Franco, Jonas Vlietinck, Huan Yu, Hugues Brenot, Thomas Danckaert, Pascal Hedelt, and Michel Van Roozendael
EGUsphere, https://doi.org/10.5194/egusphere-2025-4026, https://doi.org/10.5194/egusphere-2025-4026, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
In this study, we developed an improved algorithm to retrieve the plume height and column density of sulfur dioxide emitted by volcanoes using data from the spectral band 2 of TROPOMI (S-5P). We tested its sensitivity to various conditions and applied it to real volcanic eruptions. Overall, our approach shows high precision, accuracy and sensitivity, and the results are consistent with other satellite measurements.
Antoine Ehret, Solène Turquety, Maya George, Juliette Hadji-Lazaro, and Cathy Clerbaux
Atmos. Chem. Phys., 25, 6365–6394, https://doi.org/10.5194/acp-25-6365-2025, https://doi.org/10.5194/acp-25-6365-2025, 2025
Short summary
Short summary
Biomass burning has a considerable effect on the chemical composition of the atmosphere and climate, due to the emission of trace gases and aerosols. We examine the relationship between fire variability and the values of carbon monoxide and aerosol optical depth observed by satellites. The observed increase in wildfires has led to a corresponding rise in the mean and extreme values of carbon monoxide and aerosol optical depth during the summer and early autumn across the Northern Hemisphere.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Anu-Maija Sundström, Marie Doutriaux-Boucher, Soheila Jafariserajehlou, Dominika Leskow-Czyzewska, Simone Mantovani, Noemi Fazzini, Bertrand Fougnie, and Federico Fierli
EGUsphere, https://doi.org/10.5194/egusphere-2025-914, https://doi.org/10.5194/egusphere-2025-914, 2025
Short summary
Short summary
This study assesses dust aerosols in PMAp CDRs from Metop-A/B, which provide global AOD data (2007–2019) and aerosol classification. We evaluate dust spatio-temporal distributions and dust AOD accuracy. Results show reliable dust classification, consistent occurrence patterns, and moderate-to-good AOD correlation, though biases vary. Challenges include occasional outliers. Seasonal AOD variations are captured, but sampling density varies. Despite this, PMAp CDRs aid global dust monitoring.
Anne Boynard, Catherine Wespes, Juliette Hadji-Lazaro, Selviga Sinnathamby, Daniel Hurtmans, Pierre-François Coheur, Marie Doutriaux-Boucher, Jacobus Onderwaater, Wolfgang Steinbrecht, Elyse A. Pennington, Kevin Bowman, and Cathy Clerbaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-1054, https://doi.org/10.5194/egusphere-2025-1054, 2025
Short summary
Short summary
This study analyzes 16 years of global ozone data to assess its impact on air quality and climate. Using satellite measurements, we observed a global decrease in tropospheric ozone, particularly in tropical and European regions. The study highlights the importance of long-term data for tracking trends, especially during events like the pandemic. We emphasize the need for improved data processing and integrating multiple datasets to better understand ozone trends.
Zitong Li, Kang Sun, Kaiyu Guan, Sheng Wang, Bin Peng, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Karen Cady-Pereira, Mark W. Shephard, Mark Zondlo, and Daniel Moore
EGUsphere, https://doi.org/10.5194/egusphere-2025-725, https://doi.org/10.5194/egusphere-2025-725, 2025
Short summary
Short summary
We estimate ammonia fluxes over the contiguous U.S. from 2008 to 2022 using a directional derivative approach applied to satellite observations from IASI and CrIS. Satellite-based flux estimates reveal that ammonia emissions deposit in nearby vegetation, with pronounced seasonal and spatial variability driven by agricultural activities, underscoring the need for improved monitoring and management strategies.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
Atmos. Chem. Phys., 25, 2017–2046, https://doi.org/10.5194/acp-25-2017-2025, https://doi.org/10.5194/acp-25-2017-2025, 2025
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, with significant changes in radiative forcing that can greatly elevate N2O.
Pramod Kumar, Grégoire Broquet, Didier Hauglustaine, Maureen Beaudor, Lieven Clarisse, Martin Van Damme, Pierre Coheur, Anne Cozic, Bo Zheng, Beatriz Revilla Romero, Antony Delavois, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2025-162, https://doi.org/10.5194/egusphere-2025-162, 2025
Short summary
Short summary
Global maps of the NH3 emissions over 2019–2022 are derived using IASI NH3 spaceborne observations, the LMDZ-INCA chemistry-transport model at 1.27°×2.5° resolution and mass balance approach. The average global NH3 emissions over the period are ~98 Tg NH3 yr-1, which is significantly higher than three reference inventories. The analysis provides confidence in the seasonal variability and regional budgets, and provides new insights into NH3 emissions at global and regional scales.
Arno Keppens, Daan Hubert, José Granville, Oindrila Nath, Jean-Christopher Lambert, Catherine Wespes, Pierre-François Coheur, Cathy Clerbaux, Anne Boynard, Richard Siddans, Barry Latter, Brian Kerridge, Serena Di Pede, Pepijn Veefkind, Juan Cuesta, Gaelle Dufour, Klaus-Peter Heue, Melanie Coldewey-Egbers, Diego Loyola, Andrea Orfanoz-Cheuquelaf, Swathi Maratt Satheesan, Kai-Uwe Eichmann, Alexei Rozanov, Viktoria F. Sofieva, Jerald R. Ziemke, Antje Inness, Roeland Van Malderen, and Lars Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3746, https://doi.org/10.5194/egusphere-2024-3746, 2025
Short summary
Short summary
The first Tropospheric Ozone Assessment Report (TOAR) encountered discrepancies between several satellite sensors’ estimates of the distribution and change of ozone in the free troposphere. Therefore, contributing to the second TOAR, we harmonise as much as possible the observational perspective of sixteen tropospheric ozone products from satellites. This only partially accounts for the observed discrepancies, with a reduction of 10–40 % of the inter-product dispersion upon harmonisation.
Lara Noppen, Lieven Clarisse, Frederik Tack, Thomas Ruhtz, Martin Van Damme, Michel Van Roozendael, Dirk Schuettemeyer, and Pierre Coheur
EGUsphere, https://doi.org/10.5194/egusphere-2024-3455, https://doi.org/10.5194/egusphere-2024-3455, 2025
Short summary
Short summary
Current infrared satellite sounders offer high spectral but low spatial resolution, limiting their ability to quantify atmospheric ammonia (NH3) at small scales. Through simulations and analysis of real data, we show that NH3 can be measured effectively from spectra with reduced resolution, either in a contiguous spectral range or in select well-chosen bands. This approach opens possibilities for the development of smaller dedicated instruments for observing NH3 at high spatial resolution.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Monica Crippa, Diego Guizzardi, Federico Pagani, Marcello Schiavina, Michele Melchiorri, Enrico Pisoni, Francesco Graziosi, Marilena Muntean, Joachim Maes, Lewis Dijkstra, Martin Van Damme, Lieven Clarisse, and Pierre Coheur
Earth Syst. Sci. Data, 16, 2811–2830, https://doi.org/10.5194/essd-16-2811-2024, https://doi.org/10.5194/essd-16-2811-2024, 2024
Short summary
Short summary
Knowing where emissions occur is essential for planning effective emission reduction measures and atmospheric modelling. Disaggregating national emissions over high-resolution grids requires spatial proxies that contain information on the location of different emission sources. This work incorporates state-of-the-art spatial information to improve the spatial representation of global emissions with the Emissions Database for Global Atmospheric Research (EDGAR).
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Bruno Franco, Lieven Clarisse, Nicolas Theys, Juliette Hadji-Lazaro, Cathy Clerbaux, and Pierre Coheur
Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-2024, https://doi.org/10.5194/acp-24-4973-2024, 2024
Short summary
Short summary
Using IASI global infrared measurements, we retrieve nitrous acid (HONO) in fire plumes from space. We detect large enhancements of pyrogenic HONO worldwide, especially from intense wildfires at Northern Hemisphere mid- and high latitudes. Predominance of IASI nighttime over daytime measurements sheds light on HONO's extended lifetime and secondary formation during long-range transport in smoke plumes. Our findings deepen the understanding of atmospheric HONO, crucial for air quality assessment.
Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, Martin Van Damme, Lieven Clarisse, Pierre Coheur, and Cathy Clerbaux
Atmos. Chem. Phys., 23, 15253–15267, https://doi.org/10.5194/acp-23-15253-2023, https://doi.org/10.5194/acp-23-15253-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. Models have difficulty predicting events of pollution associated with NH3 since ground-based observations of this gas are still relatively sparse and difficult to implement. We present the first relatively long (2.5 years) and continuous record of hourly NH3 concentrations in Paris to determine its temporal variabilities at different scales to unravel emission sources.
Lieven Clarisse, Bruno Franco, Martin Van Damme, Tommaso Di Gioacchino, Juliette Hadji-Lazaro, Simon Whitburn, Lara Noppen, Daniel Hurtmans, Cathy Clerbaux, and Pierre Coheur
Atmos. Meas. Tech., 16, 5009–5028, https://doi.org/10.5194/amt-16-5009-2023, https://doi.org/10.5194/amt-16-5009-2023, 2023
Short summary
Short summary
Ammonia is an important atmospheric pollutant. This article presents version 4 of the algorithm which retrieves ammonia abundances from the infrared measurements of the satellite sounder IASI. A measurement operator is introduced that can emulate the measurements (so-called averaging kernels) and measurement uncertainty is better characterized. Several other changes to the product itself are also documented, most of which improve the temporal consistency of the 2007–2022 IASI NH3 dataset.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Money Ossohou, Jonathan Edward Hickman, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Marcellin Adon, Véronique Yoboué, Eric Gardrat, Maria Dias Alvès, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 23, 9473–9494, https://doi.org/10.5194/acp-23-9473-2023, https://doi.org/10.5194/acp-23-9473-2023, 2023
Short summary
Short summary
The updated analyses of ground-based concentrations and satellite total vertical columns of atmospheric ammonia help us to better understand 21st century ammonia dynamics in sub-Saharan Africa. We conclude that the drivers of trends are agriculture in the dry savanna of Katibougou, Mali; air temperature and agriculture in the wet savanna of Djougou, Benin, and Lamto, Côte d'Ivoire; and leaf area index, air temperature, residential, and agriculture in forests of Bomassa, Republic of Congo.
Zhao-Cheng Zeng, Lu Lee, Chengli Qi, Lieven Clarisse, and Martin Van Damme
Atmos. Meas. Tech., 16, 3693–3713, https://doi.org/10.5194/amt-16-3693-2023, https://doi.org/10.5194/amt-16-3693-2023, 2023
Short summary
Short summary
This study presents an NH3 retrieval algorithm based on the optimal estimation method for the Geostationary Interferometric Infrared Sounder (GIIRS) on board China’s FengYun-4B satellite (FY-4B/GIIRS). Retrieval results demonstrate the capability of FY-4B/GIIRS in capturing the diurnal NH3 changes in East Asia. This operational geostationary observation by FY-4B/GIIRS represents an important advancement over the twice-per-day observations provided by current low-Earth-orbit (LEO) instruments.
Adrien Vu Van, Anne Boynard, Pascal Prunet, Dominique Jolivet, Olivier Lezeaux, Patrice Henry, Claude Camy-Peyret, Lieven Clarisse, Bruno Franco, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 16, 2107–2127, https://doi.org/10.5194/amt-16-2107-2023, https://doi.org/10.5194/amt-16-2107-2023, 2023
Short summary
Short summary
With its near-real-time observations and good horizontal coverage, the Infrared Atmospheric Sounding Interferometer (IASI) instrument can contribute to the monitoring systems for a systematic and continuous detection of exceptional atmospheric events such as fires, anthropogenic pollution episodes, volcanic eruptions, or industrial releases. In this paper, a new approach is described for the detection and characterization of unexpected events in terms of trace gases using IASI radiance spectra.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Beatriz Herrera, Alejandro Bezanilla, Thomas Blumenstock, Enrico Dammers, Frank Hase, Lieven Clarisse, Adolfo Magaldi, Claudia Rivera, Wolfgang Stremme, Kimberly Strong, Camille Viatte, Martin Van Damme, and Michel Grutter
Atmos. Chem. Phys., 22, 14119–14132, https://doi.org/10.5194/acp-22-14119-2022, https://doi.org/10.5194/acp-22-14119-2022, 2022
Short summary
Short summary
This work investigates atmospheric ammonia (NH3), a key trace gas with consequences for the environment and human health, in Mexico City. The results from the ground-based and satellite instruments show the variability and spatial distribution of NH3 over this region. NH3 in Mexico City has been increasing for the past 10 years and most of its sources are urban. This work contributes to a better understanding of NH3 sources and variability in urban and remote areas.
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William C. Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
Atmos. Chem. Phys., 22, 12907–12922, https://doi.org/10.5194/acp-22-12907-2022, https://doi.org/10.5194/acp-22-12907-2022, 2022
Short summary
Short summary
Large cities can experience high levels of fine particulate matter (PM2.5) pollution linked to ammonia (NH3) mainly emitted from agricultural activities. Using a combination of PM2.5 and NH3 measurements from in situ instruments, satellite infrared spectrometers, and atmospheric model simulations, we have demonstrated the role of NH3 and meteorological conditions on pollution events occurring over Paris, Toronto, and Mexico City.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022, https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Short summary
The first 10-year data record (2008–2017) of HNO3 total columns measured by the IASI-A/MetOp infrared sounder is exploited to monitor the relationship between the temperature decrease and the HNO3 loss observed each year in the Antarctic stratosphere during the polar night. We verify the recurrence of specific regimes in the cycle of IASI HNO3 and identify the day and the 50 hPa temperature (
drop temperature) corresponding to the onset of denitrification in Antarctic winter for each year.
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, Catherine Hayer, Benjamin Esse, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4801–4817, https://doi.org/10.5194/amt-15-4801-2022, https://doi.org/10.5194/amt-15-4801-2022, 2022
Short summary
Short summary
Sulfur dioxide plume height after a volcanic eruption is an important piece of information for many different scientific studies and applications. Satellite UV retrievals are useful in this respect, but available algorithms have shown so far limited sensitivity to SO2 height. Here we present a new technique to improve the retrieval of SO2 plume height for SO2 columns as low as 5 DU. We demonstrate the algorithm using TROPOMI measurements and compare with other height estimates.
Zhenqi Luo, Yuzhong Zhang, Wei Chen, Martin Van Damme, Pierre-François Coheur, and Lieven Clarisse
Atmos. Chem. Phys., 22, 10375–10388, https://doi.org/10.5194/acp-22-10375-2022, https://doi.org/10.5194/acp-22-10375-2022, 2022
Short summary
Short summary
We quantify global ammonia (NH3) emissions over the period from 2008 to 2018 using an improved fast top-down method that incorporates Infrared Atmospheric
Sounding Interferometer (IASI) satellite observations and GEOS-Chem atmospheric chemical simulations. The top-down analysis finds a global total NH3 emission that is 30 % higher than the bottom-up estimate, largely reconciling a large discrepancy of more than a factor of 2 found in previous top-down studies using the same satellite data.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Jonathan E. Hickman, Niels Andela, Enrico Dammers, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Courtney A. Di Vittorio, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 16277–16291, https://doi.org/10.5194/acp-21-16277-2021, https://doi.org/10.5194/acp-21-16277-2021, 2021
Short summary
Short summary
Ammonia (NH3) gas emitted from soils and biomass burning contributes to particulate air pollution. We used satellite observations of the atmosphere over Africa to show that declines in NH3 concentrations over South Sudan's Sudd wetland in 2008–2017 are related to variation in wetland extent. We also find NH3 concentrations increased in West Africa as a result of biomass burning and increased in the Lake Victoria region, likely due to agricultural expansion and intensification.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andrea Pozzer, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 11257–11288, https://doi.org/10.5194/acp-21-11257-2021, https://doi.org/10.5194/acp-21-11257-2021, 2021
Short summary
Short summary
The strong El Niño in 2015 led to a particular dry season in Indonesia and favoured severe peatland fires. The smouldering conditions of these fires and the high carbon content of peat resulted in high volatile organic compound (VOC) emissions. By using a comprehensive atmospheric model, we show that these emissions have a significant impact on the tropospheric composition and oxidation capacity. These emissions are transported into to the lower stratosphere, resulting in a depletion of ozone.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Karn Vohra, Eloise A. Marais, Shannen Suckra, Louisa Kramer, William J. Bloss, Ravi Sahu, Abhishek Gaur, Sachchida N. Tripathi, Martin Van Damme, Lieven Clarisse, and Pierre-F. Coheur
Atmos. Chem. Phys., 21, 6275–6296, https://doi.org/10.5194/acp-21-6275-2021, https://doi.org/10.5194/acp-21-6275-2021, 2021
Short summary
Short summary
We find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so we use their long record to estimate air quality trends in major UK and Indian cities. Our trend analysis shows that pollutants targeted with air quality policies have not declined in Delhi and Kanpur but have in London and Birmingham, with the exception of a recent and dramatic increase in reactive volatile organics in London. Unregulated ammonia has increased only in Delhi.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
Shoma Yamanouchi, Camille Viatte, Kimberly Strong, Erik Lutsch, Dylan B. A. Jones, Cathy Clerbaux, Martin Van Damme, Lieven Clarisse, and Pierre-Francois Coheur
Atmos. Meas. Tech., 14, 905–921, https://doi.org/10.5194/amt-14-905-2021, https://doi.org/10.5194/amt-14-905-2021, 2021
Short summary
Short summary
Ammonia (NH3) is a major source of pollution in the air. As such, there have been increasing efforts to measure the atmospheric abundance of NH3 and its spatial and temporal variability. In this study, long-term measurements of NH3 over Toronto, Canada, derived from multiscale datasets are examined. These NH3 datasets were compared to each other and to a model to better understand NH3 variability and to assess model performance.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020, https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Short summary
Studies have suggested the importance of ammonia emissions on pollution particle formation over Europe, whose main atmospheric source is agriculture. In this study, we performed an inter-comparison of two alternative inventories, both with a reference inventory, that quantify the French ammonia emissions during spring 2011. Over regions with large mineral fertilizer use, like over northeastern France, NH3 emissions are probably considerably underestimated by the reference inventory.
Cited articles
Aires, F., Chédin, A., Scott, N. A., and Rossow, W. B.: A regularized
neural net approach for retrieval of atmospheric and surface temperatures
with the IASI instrument, J. Appl. Meteorol., 41, 144–159, https://doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2, 2002.
Aquila, V., Swartz, W. H., Waugh, D. W., Colarco, P. R., Pawson, S.,
Polvani, L. M., and Stolarski, R. S.: Isolating the roles of different
forcing agents in global stratospheric temperature changes using model
integrations with incrementally added single forcings, J. Geophys.
Res.-Atmos., 121, 8067–8082, https://doi.org/10.1002/2015JD023841, 2016.
Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M., and
McNally, A.: Enhancing the impact of IASI observations through an updated
observation-error covariance matrix, Q. J. Roy. Meteorol. Soc., 142,
1767–1780, https://doi.org/10.1002/qj.2774, 2016.
Bouillon, M.: IASI-FT Atmospheric Temperature Profiles, LATMOS/ULB [data set], https://iasi-ft.eu/products/atmospheric-temperature-profiles/ (last access: 15 March 2022), 2021a.
Bouillon, M.: IASI-FT Atmospheric Temperature Profiles, LATMOS/ULB [dataset], Metop-A temperatures, https://iasi-ft.eu/metadata/metadata_ATP_A/ (last access: 15 March 2022), 2021b.
Bouillon, M.: IASI-FT Atmospheric Temperature Profiles, LATMOS/ULB [dataset], Metop-B temperatures, https://iasi-ft.eu/metadata/metadata_ATP_B/ (last access: 15 March 2022), 2021c.
Bouillon, M., Safieddine, S., Hadji-Lazaro, J., Whitburn, S., Clarisse, L.,
Doutriaux-Boucher, M., Coppens, D., August, T., Jacquette, E., and Clerbaux, C.:
Ten-year assessment of IASI radiance and temperature, Remote Sens., 12, 2393,
https://doi.org/10.3390/rs12152393, 2020.
Boynard, A., Hurtmans, D., Garane, K., Goutail, F., Hadji-Lazaro, J., Koukouli, M. E., Wespes, C., Vigouroux, C., Keppens, A., Pommereau, J.-P., Pazmino, A., Balis, D., Loyola, D., Valks, P., Sussmann, R., Smale, D., Coheur, P.-F., and Clerbaux, C.: Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements, Atmos. Meas. Tech., 11, 5125–5152, https://doi.org/10.5194/amt-11-5125-2018, 2018.
Chédin, A., Serrar, S., Scott, N. A., Crévoisier, C., and Armante
R.: First global measurement of midtropospheric CO2 from NOAA polar
satellites: Tropical zone, J. Geophys. Res., 108, 4581,
https://doi.org/10.1029/2003JD003439, 2003.
Chédin, A., Capelle, V., and Scott, N. A.: Detection of IASI dust AOD
trends over Sahara: How many years of data required?, Atmos. Res.,
212, 120–129, https://doi.org/10.1016/j.atmosres.2018.05.004, 2018.
Clarisse, L., R'Honi, Y., Coheur, P.-F., Hurtmans, D., and Clerbaux, C.:
Thermal infrared nadir observations of 24 atmospheric gases, Geophys. Res.
Lett., 38, L10802, https://doi.org/10.1029/2011GL047271, 2011.
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009.
Collard, A.: Selection of IASI channels for use in numerical weather
prediction, Q. J. Roy. Meteorol. Soc., 133, 1977–1991, https://doi.org/10.1002/qj.178,
2007.
Copernicus: ERA5 hourly data on pressure levels from 1979 to present, Copernicus [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (last access: 20 December 2021), 2018.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Data Store (CDS), Copernicus Climate Change Service (C3S) [data set],
https://cds.climate.copernicus.eu/cdsapp#!/home/, last access: 31 August 2019.
Crevoisier, C., Clerbaux, C., Guidard, V., Phulpin, T., Armante, R., Barret, B., Camy-Peyret, C., Chaboureau, J.-P., Coheur, P.-F., Crépeau, L., Dufour, G., Labonnote, L., Lavanant, L., Hadji-Lazaro, J., Herbin, H., Jacquinet-Husson, N., Payan, S., Péquignot, E., Pierangelo, C., Sellitto, P., and Stubenrauch, C.: Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables, Atmos. Meas. Tech., 7, 4367–4385, https://doi.org/10.5194/amt-7-4367-2014, 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C, de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide [Data set], NOAA/GML, https://gml.noaa.gov/ccgg/trends/gl_data.html, last access: 15 December 2021.
Doutriaux-Boucher, M. and August, T.: IASI-A and -B climate data record of all sky temperature and humidity profiles Release 1, European Organisation for the Exploitation of Meteorological Satellites [data set], https://doi.org/10.15770/EUM_SEC_CLM_0027, 2020.
ECMWF: IFS documentation-CY43R1, Part IV: physical processes”, Reading,
UK, 223 pp., ECMWF, https://doi.org/10.21957/sqvo5yxja, 2016.
EUMETSAT: IASI L2 Metop-B – validation report, EUMETSAT, Darmstadt, Germany,
https://www.eumetsat.int/media/45985 (last access: 23 August 2021), 2013a.
EUMETSAT: HIRS Level 1 product format specification,
https://www.eumetsat.int/media/38677 (last access: 10 September 2021), 2013b.
EUMETSAT: EUMETSAT annual report 2017, https://www.eumetsat.int/media/42734 (last access: 23 August 2021),
2017.
EUMETSAT: IASI Level 1C Climate Data Record Release 1 – Metop-A, European Organisation for the Exploitation of Meteorological Satellites, EUMETSAT [data set], https://doi.org/10.15770/EUM_SEC_CLM_0014, 2018.
EUMETSAT: Validation report IASI Level2 T and Q profiles release
1, https://doi.org/10.15770/EUM_SEC_CLM_0027, 2020.
George, M., Clerbaux, C., Bouarar, I., Coheur, P.-F., Deeter, M. N., Edwards, D. P., Francis, G., Gille, J. C., Hadji-Lazaro, J., Hurtmans, D., Inness, A., Mao, D., and Worden, H. M.: An examination of the long-term CO records from MOPITT and IASI: comparison of retrieval methodology, Atmos. Meas. Tech., 8, 4313–4328, https://doi.org/10.5194/amt-8-4313-2015, 2015.
Goldberg, M., Ohring, G., Butler, J., Cao, C., Datla, R., Doelling, D.,
Gärtner, V., Hewison, T., Iacovazzi, B., Kim, D., Kurino, T., Lafeuille,
J., Minnis, P., Renaut, D., Schmetz, J., Tobin, D., Wang, L., Weng, F., Wu,
X., Yu, F., Zhang, P., and Zhu, T.: The Global Space-Based Inter-Calibration
System, B. Am. Meteorol. Soc., 92, 467–475, https://doi.org/10.1175/2010BAMS2967.1,
2011.
Hans, I., Burgdorf, M., Buehler, S. A., Prange, M., Lang, T., and John,
V. O.: MHS microwave humidity sounder climate data record release 1 – Metop
and NOAA, European Organisation for the Exploitation of Meteorological
Satellites, https://doi.org/10.15770/EUM_SEC_CLM_0045, 2020.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza,
R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming,
J., Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger,
L., Hogan, R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez,
P., Munoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational
global reanalysis: progress, future directions and synergies with NWP, Era5
Report Series,
https://www.ecmwf.int/en/elibrary/18765-operational-global (last access: 31 August 2019), 2018.
Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A.,
Camy-Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur,
P.-F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F.,
Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans,
D., Illingworth, S., Jacquinet-Husson, N., Kerzenmacher, T., Klaes,
D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S.,
Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin,
T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch,
C., Taylor, J., Tobin, D., Wolf, W., and Zhou, D.: Hyperspectral Earth
observation from IASI: five years of accomplishments, B. Am. Meteorol.
Soc., 93, 347–370, https://doi.org/10.1175/BAMS-D-11-00027.1, 2012.
Lambrigtsen, B. H., Fetzer, E., Fishbein, E., Lee, S.-Y., and Pagano, T.:
AIRS – the atmospheric infrared sounder, IEEE International Geoscience and
Remote Sensing Symposium, https://doi.org/10.1109/IGARSS.2004.1370798, 2004.
Li, J., Wang, M.-H., and Ho, Y.-S.: Trends in research on global climate
change: a science citation index expanded-based analysis, Global Planet.
Change, 77, 13–20, https://doi.org/10.1016/j.gloplacha.2011.02.005, 2011.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B.: IPCC, 2021: Climate Change 2021: The
Physical Science Basis, Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, in press, 2022.
Maycock, A. C., Randel, W. J., Steiner, A. K., Karpechko, A. Y., Christy,
J., Saunders, R., Thompson, D. W. J., Zou, C.-Z., Chrysanthou, A., Luke
Abraham, N., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M.,
Dameris, M., Deushi, M., Dhomse, S., Di Genova, G., Jöckel, P.,
Kinnison, D. E., Kirner, O., Ladstädter, F., Michou, M., Morgenstern,
O., O'Connor, F., Oman, L., Pitari, G., Plummer, D. A., Revell, L. E.,
Rozanov, E., Stenke, A., Visioni, D., Yamashita, Y., and Zeng, G.:
Revisiting the mystery of recent stratospheric temperature trends, Geophys.
Res. Lett., 45, 9919–9933, https://doi.org/10.1029/2018GL078035, 2018.
Moncet, J.-L., Uymin, G., Liang, P., and Lipton, A. E.: Fast and accurate
radiative transfer in the thermal regime by simultaneous optimal spectral
sampling over all channels, J. Atmos. Sci., 72, 2622–2641, https://doi.org/10.1175/JAS-D-14-0190.1, 2015.
NOAA: Multivariate ENSO Index Version 2 [Data set], https://psl.noaa.gov/enso/mei/, last
access: 10 January 2022a.
NOAA: QBO U30 and U50 Indices [Data set], https://www.cpc.ncep.noaa.gov/data/indices/, last
access: 10 January 2022b.
Parracho, A. C., Safieddine, S., Lezeaux, O., Clarisse, L., Whitburn, S.,
George, M., Prunet, P., and Clerbaux, C.: IASI-derived sea surface
temperature data set for climate, Earth Space Sci., 8, e2020EA001427,
https://doi.org/10.1029/2020EA001427, 2021.
Pellet, V. and Aires, F.: Bottleneck channels algorithm for satellite data
dimension reduction: a case study for IASI, IEEE Trans. Geosci. Remote Sens,
56, 6069–6081, https://doi.org/10.1109/TGRS.2018.2830123, 2018.
Rabier, F., Fourrié, N., Chafäi, D., and Prunet, P.: Channel selection
methods for Infrared Atmospheric Sounding Interferometer radiances, Q. J.
Roy. Meteorol. Soc., 128, 1011–1027, https://doi.org/10.1256/0035900021643638,
2002.
Randel, W. J., Smith, A. K., Wu, F., Zou, C.-Z., and Qian, H.: Stratospheric
temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER
satellite observations, J. Climate, 29, 4843–4859,
https://doi.org/10.1175/JCLI-D-15-0629.1, 2016.
Reale, A., Tilley, F., Ferguson, M., and Allegrino, A.: NOAA operational
sounding products for advanced TOVS, Int. J. Remote Sens., 29, 4615–4651,
https://doi.org/10.1080/01431160802020502, 2008.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and
Practice, World Scientific Publishing, London, UK, 2000.
Safieddine, S., Parracho, A. C., George, M., Aires, F., Pellet, V.,
Clarisse, L., Whitburn, S., Lezeaux, O., Thépaut, J.-N., Hersbach, H.,
Radnoti, G., Goettsche, F., Martin, M., Doutriaux-Boucher, M., Coppens, D.,
August, T., Zhou, D. K., and Clerbaux, C.: Artificial neural network to
retrieve land and sea skin temperature from IASI, Remote Sens., 12, 2777,
https://doi.org/10.3390/rs12172777, 2020a.
Safieddine, S., Bouillon, M., Paracho,
A. C., Jumelet, J., Tencé, F., Pazmino,
A., Safieddine, S., Bouillon, M., Paracho,
A. C., Jumelet, J., Tencé, F., Pazmino,
A., Safieddine, S., Bouillon, M., Parracho, A. C., Jumelet, J., Tencé, F., Pazmino, A., Goutail, F., Wespes, C., Bekki, S., Boynard, A., Hadji-Lazaro, J., Coheur, P. F., Hurtmans, D., and Clerbaux, C.: Antarctic ozone enhancement during the 2019 sudden stratospheric warming event, Geophys. Res. Lett., 47, e2020GL087810, https://doi.org/10.1029/2020GL087810, 2020b.
Santer, B. D., Solomon, S., Wentz, F. J., Fu, Q., Po-Chedley, S., Mears, C.,
Painter, J. F., and Bonfils, C.: Tropospheric warming over the past two
decades, Sci. Rep., 7, 2336, https://doi.org/10.1038/s41598-017-02520-7, 2017.
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018.
Scott, N.: Analyzed RadioSoundings Archive (ARSA), ARSA Database [data set], https://ara.lmd.polytechnique.fr/index.php?page=arsa (last access: 14 January 2022), 2019.
Scott, N. A. and Chédin, A.: A fast line-by-line method for atmospheric
absorption computations: the automatized atmospheric absorption atlas, J.
Appl. Meteorol., 20, 802–812, https://doi.org/10.1175/1520-0450(1981)020{%}3C0802:AFLBLM{%}3E2.0.CO;2, 1981.
Scott, N. A., Chédin, A., Pernin, J., Armante, R., Capelle, V., and
Crépeau, L.: QUASAR: quality assessment of satellite and radiosonde
data, http://gewex-vap.org/wp-content/uploads/2016/11/QUASAR_LMD_CMSAF_GVAP_v1-0_for_release.pdf (last access: 15 March 2022), 2015.
Seidel, D. J., Berger, F. H., Immler, F., Sommer, M., Vömel, H.,
Diamond, H. J., Dykema, J., Goodrich, D., Murray, W., Peterson, T.,
Sisterson, D., Thorne, P., and Wang, J.: Reference upper-air observations
for climate: rationale, progress, and plans, B. Am. Meteorol. Soc., 90,
361–369, https://doi.org/10.1175/2008BAMS2540.1, 2009.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019.
Strahan, S. E., Douglass, A. R., and Damon, M. R.: Why do Antarctic ozone recovery trends vary?, J.
Geophys. Res.-Atmos., 124, 8837–8850, https://doi.org/10.1029/2019JD030996, 2019.
Susskind, J., Schmidt, G. A., Lee, J. N., and Iredell, L.: Recent global
warming as confirmed by AIRS, Environ. Res. Lett., 14, 044030,
https://doi.org/10.1088/1748-9326/aafd4e, 2019.
Tett, S. F. B., Jones, G. S., Stott, P. A., Hill, D. C., Mitchell, J. F. B.,
Allen, M. R., Ingram, W. J., Johns, T. C., Johnson, C. E., Jones, A.,
Roberts, D. L., Sexton, D. M. H., and Woodage, M. J.: Estimation of natural
and anthropogenic contributions to twentieth century temperature change, J.
Geophys. Res., 107, 4306, https://doi.org/10.1029/2000JD000028, 2002.
Theil, H.: A rank-invariant method of linear and polynomial regression
analysis. I, II, III”, Nederl. Akad. Wetensch.,
Proc., 53, 386–392, 521–525, 1397–1412, 1950.
Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur, P.-F.: Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmos. Meas. Tech., 10, 4905–4914, https://doi.org/10.5194/amt-10-4905-2017, 2017.
Weber, M., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Burrows, J. P., Long, C. S., and Loyola, D.: Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery, Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, 2018.
WMO: Scientific Assessment of Ozone Depletion: 2018 Global Ozone Research and Monitoring
Project Report No. 58, World Meteorological Organization, 588 pp., Geneva, Switzerland, 2018.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi,
J., and Dickinson, R.: The role of satellite remote sensing in climate
change studies, Nat. Clim. Change, 3, 875–883, https://doi.org/10.1038/nclimate1908,
2013.
Zou, C.-Z., Qian, H., Wang, W., Wang, L., and Long, C.: Recalibration and
merging of SSU observations for stratospheric temperature trend studies, J.
Geophys. Res.-Atmos., 119, 13180–13205, https://doi.org/10.1002/2014JD021603, 2014.
Short summary
The IASI instruments have been observing Earth since 2007. We use a neural network to retrieve atmospheric temperatures. This new temperature data record is validated against other datasets and shows good agreement. We use this new dataset to compute trends over the 2008–2020 period. We found a warming of the troposphere, more important at the poles. In the stratosphere, we found that temperatures decrease everywhere except at the South Pole. The cooling is more pronounced at the South pole.
The IASI instruments have been observing Earth since 2007. We use a neural network to retrieve...