Articles | Volume 15, issue 2
https://doi.org/10.5194/amt-15-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41
Christoph von Rohden
CORRESPONDING AUTHOR
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Michael Sommer
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Tatjana Naebert
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Vasyl Motuz
Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Cottbus-Senftenberg, Siemens-Halske-Ring 15a, 03046 Cottbus, Germany
Ruud J. Dirksen
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Related authors
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Short summary
Modern radiosonde balloons fly from ground level up to the lower stratosphere and take temperature measurements. What is the uncertainty of interpolated values in the resulting atmospheric temperature profiles? To answer this question, we introduce a general statistical–mathematical model for the computation of interpolation uncertainty. Analysing more than 51 million measurements, we provide some understanding of the consequences of filling missing data with interpolated ones.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
C. von Rohden, S. Weinreben, and F. Fehres
Ocean Sci., 12, 275–283, https://doi.org/10.5194/os-12-275-2016, https://doi.org/10.5194/os-12-275-2016, 2016
Short summary
Short summary
The variability of the relative salt composition in seawater may have significant influence on physical properties. Based on off-shore and laboratory measurements, this effect is quantified for the first time for speed of sound in Baltic seawater. Time-of-flight sensors with sufficient resolution were applied to resolve the small sound speed anomaly to values in the range of several cm s−1. The results suggest that the effect can be reasonably predicted by the recent equation of state (TEOS-10).
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-635, https://doi.org/10.5194/egusphere-2024-635, 2024
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and mid-latitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, https://doi.org/10.5194/amt-14-1365-2021, 2021
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. The accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Short summary
Modern radiosonde balloons fly from ground level up to the lower stratosphere and take temperature measurements. What is the uncertainty of interpolated values in the resulting atmospheric temperature profiles? To answer this question, we introduce a general statistical–mathematical model for the computation of interpolation uncertainty. Analysing more than 51 million measurements, we provide some understanding of the consequences of filling missing data with interpolated ones.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Dan Weaver, Kimberly Strong, Kaley A. Walker, Chris Sioris, Matthias Schneider, C. Thomas McElroy, Holger Vömel, Michael Sommer, Katja Weigel, Alexei Rozanov, John P. Burrows, William G. Read, Evan Fishbein, and Gabriele Stiller
Atmos. Meas. Tech., 12, 4039–4063, https://doi.org/10.5194/amt-12-4039-2019, https://doi.org/10.5194/amt-12-4039-2019, 2019
Short summary
Short summary
This work assesses water vapour profiles acquired by Atmospheric Chemistry Experiment (ACE) satellite instruments in the upper troposphere and lower stratosphere (UTLS) using comparisons to radiosondes and ground-based Fourier transform infrared spectrometer measurements acquired at a Canadian high Arctic measurement site in Eureka, Nunavut. Additional comparisons are made between these Eureka measurements and other water vapour satellite datasets for context, including AIRS, MLS, and others.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Christian Borger, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes, and Xavier Calbet
Atmos. Meas. Tech., 11, 4981–5006, https://doi.org/10.5194/amt-11-4981-2018, https://doi.org/10.5194/amt-11-4981-2018, 2018
Short summary
Short summary
In this paper MUSICA IASI tropospheric water vapour profile retrievals are evaluated by performing theoretical error assessments and comparisons to GRUAN radiosonde measurements. We show that the vertical water vapour distribution is well captured from 1 km above the ground up to the tropopause. Largest error sources are unrecognized clouds and uncertainties in atmospheric temperature, which can reach about 25 %.
Xavier Calbet, Niobe Peinado-Galan, Pilar Rípodas, Tim Trent, Ruud Dirksen, and Michael Sommer
Atmos. Meas. Tech., 10, 2323–2335, https://doi.org/10.5194/amt-10-2323-2017, https://doi.org/10.5194/amt-10-2323-2017, 2017
Short summary
Short summary
GRUAN temperature and water vapour radiosonde measurements are shown to be consistent with infrared hyperspectral measurements from IASI using LBLRTM as a
reference radiative transfer model. Long-term climate data records of temperature and water vapour can be derived from radiosonde measurements and from
space-based instruments. In order to have accurate and homogeneously useful data series, it is a critical necessary condition that these data sets be
consistent with each other.
Hélène Vérèmes, Guillaume Payen, Philippe Keckhut, Valentin Duflot, Jean-Luc Baray, Jean-Pierre Cammas, Jimmy Leclair De Bellevue, Stéphanie Evan, Françoise Posny, Franck Gabarrot, Jean-Marc Metzger, Nicolas Marquestaut, Susanne Meier, Holger Vömel, and Ruud Dirksen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-32, https://doi.org/10.5194/amt-2017-32, 2017
Preprint withdrawn
Holger Vömel, Tatjana Naebert, Ruud Dirksen, and Michael Sommer
Atmos. Meas. Tech., 9, 3755–3768, https://doi.org/10.5194/amt-9-3755-2016, https://doi.org/10.5194/amt-9-3755-2016, 2016
Short summary
Short summary
This paper describes the fidelity of vertical profile measurements of atmospheric water vapor using the Cryogenic Frostpoint Hygrometer (CFH), which depends on the stability of the calibration, instrument behaviour, and validation of these measurements with respect to a reference. Being able to characterize each of these elements is essential in the understanding long time series of atmospheric water vapor measurements and in the interpretation of water vapor process studies.
C. von Rohden, S. Weinreben, and F. Fehres
Ocean Sci., 12, 275–283, https://doi.org/10.5194/os-12-275-2016, https://doi.org/10.5194/os-12-275-2016, 2016
Short summary
Short summary
The variability of the relative salt composition in seawater may have significant influence on physical properties. Based on off-shore and laboratory measurements, this effect is quantified for the first time for speed of sound in Baltic seawater. Time-of-flight sensors with sufficient resolution were applied to resolve the small sound speed anomaly to values in the range of several cm s−1. The results suggest that the effect can be reasonably predicted by the recent equation of state (TEOS-10).
T. Ning, J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, and D. Smale
Atmos. Meas. Tech., 9, 79–92, https://doi.org/10.5194/amt-9-79-2016, https://doi.org/10.5194/amt-9-79-2016, 2016
Short summary
Short summary
Integrated water vapour (IWV) obtained from GNSS is to be developed into a GRUAN data product. In addition to the actual measurement, this data product needs to provide an estimate of the measurement uncertainty at the same time resolution as the actual measurement. The method developed in the paper fulfils the requirement by assigning a specific uncertainty to each data point. The method is also valuable for all applications of GNSS IWV data in atmospheric research and weather forecast.
R. J. Dirksen, M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel
Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, https://doi.org/10.5194/amt-7-4463-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Pre-launch calibration and validation of the Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) instrument
A quality control method based on physical constraints and data-driven collaborative for wind observations along high-speed railway lines
Measuring diameters and velocities of artificial raindrops with a neuromorphic event camera
Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters
Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements
Contactless optical hygrometry in LACIS-T
Laboratory characterisation and intercomparison sounding test of dual thermistor radiosondes for radiation correction
Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator
Modeling the dynamic behavior of a droplet evaporation device for the delivery of isotopically calibrated low-humidity water vapor
The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): an experimental facility for studying ocean–sea-ice–atmosphere interactions
Experimental methodology and procedure for SAPPHIRE: a Semi-automatic APParatus for High-voltage Ice nucleation REsearch
Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study
A pyroelectric thermal sensor for automated ice nucleation detection
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables
An automated method for preparing and calibrating electrochemical concentration cell (ECC) ozonesondes
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
Temperature uniformity in the CERN CLOUD chamber
Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere – Part 1: Basic concepts of the measurement technique
Brent A. McBride, J. Vanderlei Martins, J. Dominik Cieslak, Roberto Fernandez-Borda, Anin Puthukkudy, Xiaoguang Xu, Noah Sienkiewicz, Brian Cairns, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 17, 5709–5729, https://doi.org/10.5194/amt-17-5709-2024, https://doi.org/10.5194/amt-17-5709-2024, 2024
Short summary
Short summary
The Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) is a new Earth-observing instrument that provides highly accurate measurements of the atmosphere and surface. Using a physics-based calibration technique, we show that AirHARP achieves high measurement accuracy in laboratory and field environments and exceeds a benchmark accuracy requirement for modern aerosol and cloud climate observations. Therefore, the HARP design is highly attractive for upcoming NASA climate missions.
Xiong Xiong, Jiajun Chen, Yanchao Zhang, Xin Chen, Yingchao Zhang, and Xiaoling Ye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1006, https://doi.org/10.5194/egusphere-2024-1006, 2024
Short summary
Short summary
This study adopts the PD-BX approach to mitigate errors stemming from the anemometer obstruction by the catenary pillars.
Kire Micev, Jan Steiner, Asude Aydin, Jörg Rieckermann, and Tobi Delbruck
Atmos. Meas. Tech., 17, 335–357, https://doi.org/10.5194/amt-17-335-2024, https://doi.org/10.5194/amt-17-335-2024, 2024
Short summary
Short summary
This paper reports a novel rain droplet measurement method that uses a neuromorphic event camera to measure droplet sizes and speeds as they fall through a shallow plane of focus. Experimental results report accuracy similar to a commercial laser sheet disdrometer. Because these measurements are driven by event camera activity, this approach could enable the economical deployment of ubiquitous networks of solar-powered disdrometers.
Jack A. Hutchings and Bronwen L. Konecky
Atmos. Meas. Tech., 16, 1663–1682, https://doi.org/10.5194/amt-16-1663-2023, https://doi.org/10.5194/amt-16-1663-2023, 2023
Short summary
Short summary
The coupled variation of the three stable isotopes of oxygen in water is being studied as a relatively new tracer of the water cycle. Measurement by laser spectroscopy has a number of pitfalls that have hampered a wider exploration of this new tracer. We demonstrate successful analysis using Picarro's L2140-i analyzer and provide recommendations for other users. We find that removal of dissolved organic carbon is required when measurements are studied near the limits of instrumental accuracy.
Lindsey Davidge, Eric J. Steig, and Andrew J. Schauer
Atmos. Meas. Tech., 15, 7337–7351, https://doi.org/10.5194/amt-15-7337-2022, https://doi.org/10.5194/amt-15-7337-2022, 2022
Short summary
Short summary
We describe a continuous-flow analysis (CFA) method to measure Δ17O by laser spectroscopy, and we show that centimeter-scale information can be measured reliably in ice cores by this method. We present seasonally resolved Δ17O data from Greenland and demonstrate that the measurement precision is not reduced by the CFA process. Our results encourage the development and use of CFA methods for Δ17O, and they identify calibration strategies as a target for method improvement.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Jae-Keun Yoo, Sungjun Lee, Suyong Kwon, Byung Il Choi, Jaewon So, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 2531–2545, https://doi.org/10.5194/amt-15-2531-2022, https://doi.org/10.5194/amt-15-2531-2022, 2022
Short summary
Short summary
Dual thermistor radiosonde (DTR) comprising two (white and black) sensors with different emissivities was developed to correct the effects of solar radiation on temperature sensors based on in situ radiation measurements. All components contributing to the uncertainty of the radiation measurement and correction are analysed. The DTR methodology improves the accuracy of temperature measurement in the upper air within the framework of the traceability to the International System of Units.
Sang-Wook Lee, Sunghun Kim, Young-Suk Lee, Byung Il Choi, Woong Kang, Youn Kyun Oh, Seongchong Park, Jae-Keun Yoo, Joohyun Lee, Sungjun Lee, Suyong Kwon, and Yong-Gyoo Kim
Atmos. Meas. Tech., 15, 1107–1121, https://doi.org/10.5194/amt-15-1107-2022, https://doi.org/10.5194/amt-15-1107-2022, 2022
Short summary
Short summary
The measurement of temperature in the free atmosphere is of significance for weather prediction and climate monitoring. Radiosondes are used to measure essential climate variables in upper air. Herein, an upper-air simulator is developed, and its performance is evaluated to improve the measurement accuracy of radiosondes by reproducing the environments that may be encountered by radiosondes. The paper presents a methodology to correct the main source of error for the radiosonde measurements.
Erik Kerstel
Atmos. Meas. Tech., 14, 4657–4667, https://doi.org/10.5194/amt-14-4657-2021, https://doi.org/10.5194/amt-14-4657-2021, 2021
Short summary
Short summary
A model was developed to quantitatively describe the dynamics, in terms of vapor-phase water concentration and isotope ratios, of nanoliter-droplet evaporation at the end of a syringe needle. Such a low humidity generator can be used to calibrate laser-based water isotope analyzers, e.g., in Antarctica. We show that modeling of experimental data constrains isotope fractionation factors and the evaporation rate to physically realistic values in good agreement with available literature values.
Max Thomas, James France, Odile Crabeck, Benjamin Hall, Verena Hof, Dirk Notz, Tokoloho Rampai, Leif Riemenschneider, Oliver John Tooth, Mathilde Tranter, and Jan Kaiser
Atmos. Meas. Tech., 14, 1833–1849, https://doi.org/10.5194/amt-14-1833-2021, https://doi.org/10.5194/amt-14-1833-2021, 2021
Short summary
Short summary
We describe the Roland von Glasow Air-Sea-Ice Chamber, a laboratory facility for studying ocean–sea-ice–atmosphere interactions. We characterise the technical capabilities of our facility to help future users plan and perform experiments. We also characterise the sea ice grown in the facility, showing that the extinction of photosynthetically active radiation, the bulk salinity, and the growth rate of our artificial sea ice are within the range of natural values.
Jens-Michael Löwe, Markus Schremb, Volker Hinrichsen, and Cameron Tropea
Atmos. Meas. Tech., 14, 223–238, https://doi.org/10.5194/amt-14-223-2021, https://doi.org/10.5194/amt-14-223-2021, 2021
Short summary
Short summary
Icing is a severe problem in many technical applications like aviation or high-voltage components for power transmission and distribution. The presented experimental setup enables the accurate investigation of the freezing of water droplets under the impact of electric fields. All boundary conditions are well controlled and investigated in detail. Results obtained with the setup might improve the understanding of the freezing process of water droplets under the impact of high electric fields.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Fred Cook, Rachel Lord, Gary Sitbon, Adam Stephens, Alison Rust, and Walther Schwarzacher
Atmos. Meas. Tech., 13, 2785–2795, https://doi.org/10.5194/amt-13-2785-2020, https://doi.org/10.5194/amt-13-2785-2020, 2020
Short summary
Short summary
We present a cheap, adaptable, and easily assembled thermal sensor for detecting microlitre droplets of water freezing. The sensor was developed to increase the level of automation in droplet array ice nucleation experiments, reducing the total amount of time required for each experiment. As a proof of concept, we compare the ice-nucleating efficiency of a crystalline and glassy sample of K-feldpsar. The glassy sample was found to be a less efficient ice nucleator at higher temperatures.
Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Selker, and Christoph Thomas
Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020, https://doi.org/10.5194/amt-13-1563-2020, 2020
Short summary
Short summary
Most observations of the atmosphere are
point observations, which only measure a small area around the sensor. This limitation creates problems for a number of disciplines, especially those that focus on how the surface and atmosphere exchange heat, mass, and momentum. We used distributed temperature sensing with fiber optics to demonstrate a key breakthrough in observing wind direction in a distributed way, i.e., not at a point, using small structures attached to the fiber-optic cables.
Francis J. Schmidlin and Bruno A. Hoegger
Atmos. Meas. Tech., 13, 1157–1166, https://doi.org/10.5194/amt-13-1157-2020, https://doi.org/10.5194/amt-13-1157-2020, 2020
Short summary
Short summary
The procedure for preparing electrochemical concentration cell (ECC) ozonesondes are considered to be standardized, but there remains the question of actual measurement accuracy, believed to be 5–10 %. It would be ideal to include a reference instrument on the balloon flight to aid in checking ECC accuracy and reliability. Balloon-borne reference instruments are not usually available, mostly because they are too expensive for other than occasional use.
Stephan E. Bansmer, Arne Baumert, Stephan Sattler, Inken Knop, Delphine Leroy, Alfons Schwarzenboeck, Tina Jurkat-Witschas, Christiane Voigt, Hugo Pervier, and Biagio Esposito
Atmos. Meas. Tech., 11, 3221–3249, https://doi.org/10.5194/amt-11-3221-2018, https://doi.org/10.5194/amt-11-3221-2018, 2018
Short summary
Short summary
Snow, frost formation and ice cubes in our drinks are part of our daily life. But what about our technical innovations like aviation, electrical power transmission and wind-energy production, can they cope with icing? Icing Wind Tunnels are an ideal laboratory environment to answer that question. In this paper, we show how the icing wind tunnel in Braunschweig (Germany) was built and how we can use it for engineering and climate research.
António Dias, Sebastian Ehrhart, Alexander Vogel, Christina Williamson, João Almeida, Jasper Kirkby, Serge Mathot, Samuel Mumford, and Antti Onnela
Atmos. Meas. Tech., 10, 5075–5088, https://doi.org/10.5194/amt-10-5075-2017, https://doi.org/10.5194/amt-10-5075-2017, 2017
Short summary
Short summary
The CERN CLOUD chamber is used to understand different processes of particle formation in the atmosphere. This information can be used by global climate models to update the influence of cloud formation. To provide the most accurate information on these processes, a thorough understanding of the chamber is necessary. Temperature measurements were performed inside the entire volume of the CLOUD chamber to ensure temperature stability and more accurate estimations of particle formation parameters.
V. D. Galkin, F. Immler, G. A. Alekseeva, F.-H. Berger, U. Leiterer, T. Naebert, I. N. Nikanorova, V. V. Novikov, V. P. Pakhomov, and I. B. Sal'nikov
Atmos. Meas. Tech., 4, 843–856, https://doi.org/10.5194/amt-4-843-2011, https://doi.org/10.5194/amt-4-843-2011, 2011
Cited articles
Albrecht, H. E., Borys, M., Damaschke, N., and Tropea, C.: Laser Doppler and Phase Doppler Measurement Techniques, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-05165-8, 2003. a
Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M.,
Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M.,
Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H.,
Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations
for Climate: From Concept to Reality, B. Am. Meteorol. Soc., 97, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1, 2016. a
de Podesta, M., Bell, S., and Underwood, R.: Air temperature sensors:
dependence of radiative errors on sensor diameter in precision metrology and
meteorology, Metrologia, 55, 229–244, https://doi.org/10.1088/1681-7575/aaaa52, 2018. a
Dirksen, R. J., Bodeker, G. E., Thorne, P. W., Merlone, A., Reale, T., Wang, J., Hurst, D. F., Demoz, B. B., Gardiner, T. D., Ingleby, B., Sommer, M., von Rohden, C., and Leblanc, T.: Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report, Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, 2020. a
Elliott, W. P. and Gaffen, D. J.: On the utility of radiosonde humidity
archives for climate studies, B. Am. Meteorol. Soc., 72, 1507–1520,
https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2, 1991. a, b
Gaffen, D. J.: Temporal inhomogeneities in radiosonde temperature records,
J. Geophys. Res.-Atmos., 99, 3667–3676,
https://doi.org/10.1029/93JD03179, 1994. a
GUM: Guide to the Epression of Uncertainty in Measurement, Tech. rep., JCGM, JCGM 100:2008, GUM 1995 with minor corrections. Published by the JCGM in the name of the BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (last access: 21 January 2022), 2008. a, b
Haimberger, L., Tavolato, C., and Sperka, S.: Toward Elimination of the Warm
Bias in Historic Radiosonde Temperature Records – Some New Results from a
Comprehensive Intercomparison of Upper-Air Data, J. Climate, 21,
4587–4606, https://doi.org/10.1175/2008JCLI1929.1, 2008. a
Han, S., Liu, Q., Han, X., Dai, W., and Yang, J.: An E-type temperature sensor for upper air meteorology, Nanotechnology and Precision Engineering, 1, 145–149, https://doi.org/10.13494/j.npe.20170016, 2018. a
Ho, S.-P., Peng, L., and Vömel, H.: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014, Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017, 2017. a
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010, 2010. a
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J. F.,
Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar,
J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper,
S., Håkansson, N., Hollmann, R., Fuchs, P., and Werscheck, M.: CLARA-A2:
CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data – Edition
2, Format: NetCDF v4, Size: 12.4 TiB, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2017. a
Key, J. R. and Schweiger, A. J.: Tools for atmospheric radiative transfer:
Streamer and FluxNet, Comput. Geosci., 24, 443–451,
https://doi.org/10.1016/S0098-3004(97)00130-1, 1998. a
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R.,
and Fujiwara, M.: GRUAN Technical Document 5 – Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes, Tech. rep., GRUAN Lead Centre, Lindenberg, version 1.0, available at: https://www.gruan.org/documentation/gruan/td/gruan-td-5 (last access: 21 January 2022), 2018. a, b
Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06∘ N, 140.13∘ E), Japan, Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, 2019. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Kang, W., Park,
S., Yang, S. G., and Kim, Y.-G.: Compensation of solar radiation and
ventilation effects on the temperature measurement of radiosondes using dual
thermistors, Meteorol. Appl., 25, 209–216,
https://doi.org/10.1002/met.1683, 2018a. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Park, S., Yang,
S. G., and Kim, Y.-G.: Correction of solar irradiation effects on air
temperature measurement using a dual-thermistor radiosonde at low temperature
and low pressure, Meteorol. Appl., 25, 283–292,
https://doi.org/10.1002/met.1690, 2018b. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Park, S., Yang,
S. G., and Kim, Y.-G.: Dual temperature sensors with different emissivities
in radiosondes for the compensation of solar irradiation effects with varying
air pressure, Meteorol. Appl., 25, 49–55,
https://doi.org/10.1002/met.1668, 2018c. a, b
Lee, S.-W., Yang, I., Choi, B. I., Kim, S., Woo, S.-B., Kang, W., Oh, Y. K.,
Park, S., Yoo, J.-K., Kim, J. C., Lee, Y. H., and Kim, Y.-G.: Development of
upper air simulator for the calibration of solar radiation effects on
radiosonde temperature sensors, Meteorol. Appl., 27, e1855,
https://doi.org/10.1002/met.1855, 2020. a, b
Lee, S.-W., Kim, S., Lee, Y.-S., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, J.-K., Lee, S., Kwon, S., and Kim, Y.-G.: Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-246, in review, 2021. a
Luers, J. K.: Estimating the Temperature Error of the Radiosonde Rod
Thermistor under Different Environments, J. Atmos. Ocean. Tech., 7, 882–895, https://doi.org/10.1175/1520-0426(1990)007<0882:ETTEOT>2.0.CO;2, 1990. a, b, c, d
Luers, J. K.: Temperature Error of the Vaisala RS90 Radiosonde,
J. Atmos. Ocean. Tech., 14, 1520–1532,
https://doi.org/10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2, 1997. a
Luers, J. K. and Eskridge, R. E.: Temperature Corrections for the VIZ and Vaisala Radiosondes, J. Appl. Meteorol., 34, 1241–1253,
https://doi.org/10.1175/1520-0450(1995)034<1241:TCFTVA>2.0.CO;2, 1995. a, b, c
McInturff, R. M., Finger, F. G., Johnson, K. W., and Laver, J. D.: Day-night
differences in radiosonde observations of the stratosphere and troposphere,
Tech. Rep. NOAA Technical Memorandum, NWS NMC 63, National Meteorological
Center, 1979. a
McMillin, L., Uddstrom, M., and Coletti, A.: A Procedure for Correcting
Radiosonde Reports for Radiation Errors, J. Atmos. Ocean. Tech., 9, 801–811,
https://doi.org/10.1175/1520-0426(1992)009<0801:APFCRR>2.0.CO;2, 1992.
a
National Aeronautics and Space Administration (NASA): Preliminary Estimates of Radiosonde Thermistor Errors, Tech. rep., edited by: Schmidlin, F. J., Luers, J. K., and Huffman, P. D., NASA-TP-2637, NASA, Washington, D.C., available at: https://ntrs.nasa.gov/citations/19870002653 (last access: 25 January 2022), 1986. a
Philipona, R., Kräuchi, A., Romanens, G., Levrat, G., Ruppert, P., Brocard,
E., Jeannet, P., Ruffieux, D., and Calpini, B.: Solar and Thermal Radiation
Errors on Upper-Air Radiosonde Temperature Measurements, J.
Atmos. Ocean. Tech., 30, 2382–2393,
https://doi.org/10.1175/JTECH-D-13-00047.1, 2013. a
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Tech. Rep. TP-560-34302, revised January 2008, NREL (National Renewable Energy Laboratory), https://doi.org/10.2172/15003974, 2003. a
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Sol. Energ., 76, 577–589,
https://doi.org/10.1016/j.solener.2003.12.003, 2004. a
Seidel, D. J., Berger, F. H., Diamond, H. J., Dykema, J., Goodrich, D., Immler, F., Murray, W., Peterson, T., Sisterson, D., Sommer, M., Thorne, P., Vömel, H., and Wang, J.: Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans, B. Am. Meteorol. Soc., 90,
361–369, https://doi.org/10.1175/2008BAMS2540.1, 2009. a, b
Seidel, D. J., Sun, B., Pettey, M., and Reale, A.: Global radiosonde balloon
drift statistics, J. Geophys. Res.-Atmos., 116,
D07102, https://doi.org/10.1029/2010JD014891, 2011. a
Sun, B., Reale, A., Schroeder, S., Seidel, D. J., and Ballish, B.: Toward
improved corrections for radiation-induced biases in radiosonde temperature
observations, J. Geophys. Res.-Atmos., 118, 4231–4243,
https://doi.org/10.1002/jgrd.50369, 2013. a
Vaisala: Vaisala Radiosonde RS41 Measurement Performance, Technical Document B211356EN-A, Vaisala, available at: https://www.vaisala.com/sites/default/files/documents/White%20paper%20RS41%20Performance%20B211356EN-A.pdf
(last access: 21 January 2022), 2013. a
von Rohden, C., Sommer, M., Naebert, T., Motuz, V., and Dirksen, R. J.: Asset package related to AMT article “Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41”, GRUAN Lead Centre [data set], https://doi.org/10.5676/GRUAN/dpkg-2021-1, 2021. a
Wang, J., Bian, J., Brown, W. O., Cole, H., Grubišić, V., and Young, K.: Vertical Air Motion from T-REX Radiosonde and Dropsonde Data, J. Atmos. Ocean. Tech., 26, 928–942, https://doi.org/10.1175/2008JTECHA1240.1, 2009. a
Short summary
Heating by solar radiation is the dominant error source for daytime temperature measurements by radiosondes. This paper describes a new laboratory setup (SISTER) to characterise this radiation error for pressures and ventilation speeds that are typical for the conditions between the surface and 35 km altitude. This characterisation is the basis for the radiation correction that is applied in the GRUAN data processing for the RS41 radiosonde. The GRUAN data product is compared to that of Vaisala.
Heating by solar radiation is the dominant error source for daytime temperature measurements by...