Articles | Volume 15, issue 2
https://doi.org/10.5194/amt-15-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-383-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41
Christoph von Rohden
CORRESPONDING AUTHOR
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Michael Sommer
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Tatjana Naebert
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Vasyl Motuz
Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Cottbus-Senftenberg, Siemens-Halske-Ring 15a, 03046 Cottbus, Germany
Ruud J. Dirksen
GRUAN Lead Centre, Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Related authors
Masatomo Fujiwara, Bomin Sun, Anthony Reale, Domenico Cimini, Salvatore Larosa, Lori Borg, Christoph von Rohden, Michael Sommer, Ruud Dirksen, Marion Maturilli, Holger Vömel, Rigel Kivi, Bruce Ingleby, Ryan J. Kramer, Belay Demoz, Fabio Madonna, Fabien Carminati, Owen Lewis, Brett Candy, Christopher Thomas, David Edwards, Noersomadi, Kensaku Shimizu, and Peter Thorne
Atmos. Meas. Tech., 18, 2919–2955, https://doi.org/10.5194/amt-18-2919-2025, https://doi.org/10.5194/amt-18-2919-2025, 2025
Short summary
Short summary
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde soundings up to and beyond 10 hPa level from various aspects. We show that the extra costs and technical challenges involved in consistent attainment of high ascents are more than outweighed by the benefits for a broad variety of real-time and delayed-mode applications. Consistent attainment of high ascents should therefore be pursued across the balloon observational network.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Masatomo Fujiwara, Bomin Sun, Anthony Reale, Domenico Cimini, Salvatore Larosa, Lori Borg, Christoph von Rohden, Michael Sommer, Ruud Dirksen, Marion Maturilli, Holger Vömel, Rigel Kivi, Bruce Ingleby, Ryan J. Kramer, Belay Demoz, Fabio Madonna, Fabien Carminati, Owen Lewis, Brett Candy, Christopher Thomas, David Edwards, Noersomadi, Kensaku Shimizu, and Peter Thorne
Atmos. Meas. Tech., 18, 2919–2955, https://doi.org/10.5194/amt-18-2919-2025, https://doi.org/10.5194/amt-18-2919-2025, 2025
Short summary
Short summary
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde soundings up to and beyond 10 hPa level from various aspects. We show that the extra costs and technical challenges involved in consistent attainment of high ascents are more than outweighed by the benefits for a broad variety of real-time and delayed-mode applications. Consistent attainment of high ascents should therefore be pursued across the balloon observational network.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025, https://doi.org/10.5194/amt-18-509-2025, 2025
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and midlatitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, https://doi.org/10.5194/amt-14-1365-2021, 2021
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. The accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Cited articles
Albrecht, H. E., Borys, M., Damaschke, N., and Tropea, C.: Laser Doppler and Phase Doppler Measurement Techniques, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-05165-8, 2003. a
Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M.,
Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M.,
Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H.,
Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations
for Climate: From Concept to Reality, B. Am. Meteorol. Soc., 97, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1, 2016. a
de Podesta, M., Bell, S., and Underwood, R.: Air temperature sensors:
dependence of radiative errors on sensor diameter in precision metrology and
meteorology, Metrologia, 55, 229–244, https://doi.org/10.1088/1681-7575/aaaa52, 2018. a
Dirksen, R. J., Bodeker, G. E., Thorne, P. W., Merlone, A., Reale, T., Wang, J., Hurst, D. F., Demoz, B. B., Gardiner, T. D., Ingleby, B., Sommer, M., von Rohden, C., and Leblanc, T.: Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report, Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, 2020. a
Elliott, W. P. and Gaffen, D. J.: On the utility of radiosonde humidity
archives for climate studies, B. Am. Meteorol. Soc., 72, 1507–1520,
https://doi.org/10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2, 1991. a, b
Gaffen, D. J.: Temporal inhomogeneities in radiosonde temperature records,
J. Geophys. Res.-Atmos., 99, 3667–3676,
https://doi.org/10.1029/93JD03179, 1994. a
GUM: Guide to the Epression of Uncertainty in Measurement, Tech. rep., JCGM, JCGM 100:2008, GUM 1995 with minor corrections. Published by the JCGM in the name of the BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, available at: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (last access: 21 January 2022), 2008. a, b
Haimberger, L., Tavolato, C., and Sperka, S.: Toward Elimination of the Warm
Bias in Historic Radiosonde Temperature Records – Some New Results from a
Comprehensive Intercomparison of Upper-Air Data, J. Climate, 21,
4587–4606, https://doi.org/10.1175/2008JCLI1929.1, 2008. a
Han, S., Liu, Q., Han, X., Dai, W., and Yang, J.: An E-type temperature sensor for upper air meteorology, Nanotechnology and Precision Engineering, 1, 145–149, https://doi.org/10.13494/j.npe.20170016, 2018. a
Ho, S.-P., Peng, L., and Vömel, H.: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014, Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017, 2017. a
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010, 2010. a
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J. F.,
Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar,
J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper,
S., Håkansson, N., Hollmann, R., Fuchs, P., and Werscheck, M.: CLARA-A2:
CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data – Edition
2, Format: NetCDF v4, Size: 12.4 TiB, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, 2017. a
Key, J. R. and Schweiger, A. J.: Tools for atmospheric radiative transfer:
Streamer and FluxNet, Comput. Geosci., 24, 443–451,
https://doi.org/10.1016/S0098-3004(97)00130-1, 1998. a
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R.,
and Fujiwara, M.: GRUAN Technical Document 5 – Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes, Tech. rep., GRUAN Lead Centre, Lindenberg, version 1.0, available at: https://www.gruan.org/documentation/gruan/td/gruan-td-5 (last access: 21 January 2022), 2018. a, b
Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06∘ N, 140.13∘ E), Japan, Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, 2019. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Kang, W., Park,
S., Yang, S. G., and Kim, Y.-G.: Compensation of solar radiation and
ventilation effects on the temperature measurement of radiosondes using dual
thermistors, Meteorol. Appl., 25, 209–216,
https://doi.org/10.1002/met.1683, 2018a. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Park, S., Yang,
S. G., and Kim, Y.-G.: Correction of solar irradiation effects on air
temperature measurement using a dual-thermistor radiosonde at low temperature
and low pressure, Meteorol. Appl., 25, 283–292,
https://doi.org/10.1002/met.1690, 2018b. a
Lee, S.-W., Park, E. U., Choi, B. I., Kim, J. C., Woo, S.-B., Park, S., Yang,
S. G., and Kim, Y.-G.: Dual temperature sensors with different emissivities
in radiosondes for the compensation of solar irradiation effects with varying
air pressure, Meteorol. Appl., 25, 49–55,
https://doi.org/10.1002/met.1668, 2018c. a, b
Lee, S.-W., Yang, I., Choi, B. I., Kim, S., Woo, S.-B., Kang, W., Oh, Y. K.,
Park, S., Yoo, J.-K., Kim, J. C., Lee, Y. H., and Kim, Y.-G.: Development of
upper air simulator for the calibration of solar radiation effects on
radiosonde temperature sensors, Meteorol. Appl., 27, e1855,
https://doi.org/10.1002/met.1855, 2020. a, b
Lee, S.-W., Kim, S., Lee, Y.-S., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, J.-K., Lee, S., Kwon, S., and Kim, Y.-G.: Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-246, in review, 2021. a
Luers, J. K.: Estimating the Temperature Error of the Radiosonde Rod
Thermistor under Different Environments, J. Atmos. Ocean. Tech., 7, 882–895, https://doi.org/10.1175/1520-0426(1990)007<0882:ETTEOT>2.0.CO;2, 1990. a, b, c, d
Luers, J. K.: Temperature Error of the Vaisala RS90 Radiosonde,
J. Atmos. Ocean. Tech., 14, 1520–1532,
https://doi.org/10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2, 1997. a
Luers, J. K. and Eskridge, R. E.: Temperature Corrections for the VIZ and Vaisala Radiosondes, J. Appl. Meteorol., 34, 1241–1253,
https://doi.org/10.1175/1520-0450(1995)034<1241:TCFTVA>2.0.CO;2, 1995. a, b, c
McInturff, R. M., Finger, F. G., Johnson, K. W., and Laver, J. D.: Day-night
differences in radiosonde observations of the stratosphere and troposphere,
Tech. Rep. NOAA Technical Memorandum, NWS NMC 63, National Meteorological
Center, 1979. a
McMillin, L., Uddstrom, M., and Coletti, A.: A Procedure for Correcting
Radiosonde Reports for Radiation Errors, J. Atmos. Ocean. Tech., 9, 801–811,
https://doi.org/10.1175/1520-0426(1992)009<0801:APFCRR>2.0.CO;2, 1992.
a
National Aeronautics and Space Administration (NASA): Preliminary Estimates of Radiosonde Thermistor Errors, Tech. rep., edited by: Schmidlin, F. J., Luers, J. K., and Huffman, P. D., NASA-TP-2637, NASA, Washington, D.C., available at: https://ntrs.nasa.gov/citations/19870002653 (last access: 25 January 2022), 1986. a
Philipona, R., Kräuchi, A., Romanens, G., Levrat, G., Ruppert, P., Brocard,
E., Jeannet, P., Ruffieux, D., and Calpini, B.: Solar and Thermal Radiation
Errors on Upper-Air Radiosonde Temperature Measurements, J.
Atmos. Ocean. Tech., 30, 2382–2393,
https://doi.org/10.1175/JTECH-D-13-00047.1, 2013. a
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Tech. Rep. TP-560-34302, revised January 2008, NREL (National Renewable Energy Laboratory), https://doi.org/10.2172/15003974, 2003. a
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Sol. Energ., 76, 577–589,
https://doi.org/10.1016/j.solener.2003.12.003, 2004. a
Seidel, D. J., Berger, F. H., Diamond, H. J., Dykema, J., Goodrich, D., Immler, F., Murray, W., Peterson, T., Sisterson, D., Sommer, M., Thorne, P., Vömel, H., and Wang, J.: Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans, B. Am. Meteorol. Soc., 90,
361–369, https://doi.org/10.1175/2008BAMS2540.1, 2009. a, b
Seidel, D. J., Sun, B., Pettey, M., and Reale, A.: Global radiosonde balloon
drift statistics, J. Geophys. Res.-Atmos., 116,
D07102, https://doi.org/10.1029/2010JD014891, 2011. a
Sun, B., Reale, A., Schroeder, S., Seidel, D. J., and Ballish, B.: Toward
improved corrections for radiation-induced biases in radiosonde temperature
observations, J. Geophys. Res.-Atmos., 118, 4231–4243,
https://doi.org/10.1002/jgrd.50369, 2013. a
Vaisala: Vaisala Radiosonde RS41 Measurement Performance, Technical Document B211356EN-A, Vaisala, available at: https://www.vaisala.com/sites/default/files/documents/White%20paper%20RS41%20Performance%20B211356EN-A.pdf
(last access: 21 January 2022), 2013. a
von Rohden, C., Sommer, M., Naebert, T., Motuz, V., and Dirksen, R. J.: Asset package related to AMT article “Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41”, GRUAN Lead Centre [data set], https://doi.org/10.5676/GRUAN/dpkg-2021-1, 2021. a
Wang, J., Bian, J., Brown, W. O., Cole, H., Grubišić, V., and Young, K.: Vertical Air Motion from T-REX Radiosonde and Dropsonde Data, J. Atmos. Ocean. Tech., 26, 928–942, https://doi.org/10.1175/2008JTECHA1240.1, 2009. a
Short summary
Heating by solar radiation is the dominant error source for daytime temperature measurements by radiosondes. This paper describes a new laboratory setup (SISTER) to characterise this radiation error for pressures and ventilation speeds that are typical for the conditions between the surface and 35 km altitude. This characterisation is the basis for the radiation correction that is applied in the GRUAN data processing for the RS41 radiosonde. The GRUAN data product is compared to that of Vaisala.
Heating by solar radiation is the dominant error source for daytime temperature measurements by...