Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4931-2022
https://doi.org/10.5194/amt-15-4931-2022
Research article
 | 
30 Aug 2022
Research article |  | 30 Aug 2022

Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments

Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever

Related authors

Shallow and Deep Convection Characteristics in the Greater Houston, Texas Area Using Cell Tracking Methodology
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2023-821,https://doi.org/10.5194/egusphere-2023-821, 2023
Short summary
Analysis of the microphysical properties of snowfall using scanning polarimetric and vertically pointing multi-frequency Doppler radars
Mariko Oue, Pavlos Kollias, Sergey Y. Matrosov, Alessandro Battaglia, and Alexander V. Ryzhkov
Atmos. Meas. Tech., 14, 4893–4913, https://doi.org/10.5194/amt-14-4893-2021,https://doi.org/10.5194/amt-14-4893-2021, 2021
Short summary
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021,https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020,https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary
Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019,https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023,https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023,https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Particle inertial effects on radar Doppler spectra simulation
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023,https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023,https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023,https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary

Cited articles

Adachi, T. and Mashiko, W.: High temporal-spatial resolution observation of tornadogenesis in a shallow supercell associated with Typhoon Hagibis (2019) using phased array weather radar, Geophys. Res. Lett., 47, e2020GL089635, https://doi.org/10.1029/2020GL089635, 2020. 
Barnes, S. L.: A Technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, 1964. 
Billam, E. R. and Harvey, D. H.: MESAR – An advanced experimental phased array radar, Proceedings of the IEEE International Radar Conference, 19–21 October 1987, London, UK, 37–40, 1987. 
Bousquet, O., Tabary, P., and Parent du Chtelet, J.: Operational multiple-Doppler wind retrieval inferred from long-range radial velocity measurements, J. Appl. Meteor. Climatol., 47, 2929–2945, https://doi.org/10.1175/2008JAMC1878.1, 2008. 
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928, 2002. 
Download
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.