Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
School of Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, NY, USA
Stephen M. Saleeby
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO, USA
Peter J. Marinescu
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO, USA
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
Pavlos Kollias
School of Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, NY, USA
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, NY, USA
Susan C. van den Heever
Department of Atmospheric Science, Colorado State University, Fort
Collins, CO, USA
Related authors
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2023-821, https://doi.org/10.5194/egusphere-2023-821, 2023
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics and environments. The study found differences in initiation location of shallow convection, in mid-level moisture between shallow and deep convection, and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Mariko Oue, Pavlos Kollias, Sergey Y. Matrosov, Alessandro Battaglia, and Alexander V. Ryzhkov
Atmos. Meas. Tech., 14, 4893–4913, https://doi.org/10.5194/amt-14-4893-2021, https://doi.org/10.5194/amt-14-4893-2021, 2021
Short summary
Short summary
Multi-wavelength radar measurements provide capabilities to identify ice particle types and growth processes in clouds beyond the capabilities of single-frequency radar measurements. This study introduces Doppler velocity and polarimetric radar observables into the multi-wavelength radar reflectivity measurement to improve identification analysis. The analysis clearly discerns snowflake aggregation and riming processes and even early stages of riming.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary
Short summary
We developed the Cloud-resolving model Radar SIMulator (CR-SIM) capable of apples-to-apples comparisons between the multiwavelength, zenith-pointing, and scanning radar and multi-remote-sensing (radar and lidar) observations and the high-resolution atmospheric model output. Applications of CR-SIM as a virtual observatory operator aid interpretation of the differences and improve understanding of the representativeness errors due to the sampling limitations of the ground-based measurements.
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019, https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Short summary
This study investigated impacts of the selected radar volume coverage pattern, the sampling time period, the number of radars used, and the added value of advection correction on the retrieval of vertical air motion from a multi-Doppler-radar technique. The results suggest that the use of rapid-scan radars can substantially improve the quality of wind retrievals and that the retrieved wind field needs to be carefully used considering the limitations of the radar observing system.
Kirk W. North, Mariko Oue, Pavlos Kollias, Scott E. Giangrande, Scott M. Collis, and Corey K. Potvin
Atmos. Meas. Tech., 10, 2785–2806, https://doi.org/10.5194/amt-10-2785-2017, https://doi.org/10.5194/amt-10-2785-2017, 2017
Short summary
Short summary
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are compared against collocated profiling radars and retrieved from an upward iteration integration iterative technique to characterize their veracity. The retrieved vertical air motions are generally within 1–2 m s−1 of agreement with profiling radars and better solution than the upward integration technique, and therefore can be used as a means to improve parameterizations in numerical models moving forward.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
EGUsphere, https://doi.org/10.5194/egusphere-2023-1722, https://doi.org/10.5194/egusphere-2023-1722, 2023
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023, https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
Short summary
CloudSat’s relatively coarse spatial resolution, low sensitivity, and blind zone limit its assessment of Arctic low-level clouds, which affect the surface energy balance. We compare cloud fractions from CloudSat and finely resolved airborne radar observations to determine CloudSat’s limitations. Cloudsat overestimates cloud fractions above its blind zone, especially during cold-air outbreaks over open water, and misses a cloud fraction of 32 % and half of the precipitation inside its blind zone.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Shannon L. Mason, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-1682, https://doi.org/10.5194/egusphere-2023-1682, 2023
Short summary
Short summary
When the EarthCARE mission enters its operational phase a large number of retrieval data products will be available, many of which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the ESA production model, with the intention of providing a compact guide to users.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2023-821, https://doi.org/10.5194/egusphere-2023-821, 2023
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics and environments. The study found differences in initiation location of shallow convection, in mid-level moisture between shallow and deep convection, and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Gabrielle R. Leung, Stephen M. Saleeby, G. Alexander Sokolowsky, Sean W. Freeman, and Susan C. van den Heever
Atmos. Chem. Phys., 23, 5263–5278, https://doi.org/10.5194/acp-23-5263-2023, https://doi.org/10.5194/acp-23-5263-2023, 2023
Short summary
Short summary
This study uses a suite of high-resolution simulations to explore how the concentration and type of aerosol particles impact shallow tropical clouds and the overall aerosol budget. Under more-polluted conditions, there are more aerosol particles present, but we also find that clouds are less able to remove those aerosol particles via rainout. Instead, those aerosol particles are more likely to be detrained aloft and remain in the atmosphere for further aerosol–cloud interactions.
Pavlos Kollias, Bernat Puidgomènech Treserras, Alessandro Battaglia, Paloma C. Borque, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 1901–1914, https://doi.org/10.5194/amt-16-1901-2023, https://doi.org/10.5194/amt-16-1901-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission developed by the European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) features the first spaceborne 94 GHz Doppler cloud-profiling radar (CPR) with Doppler capability. Here, we describe the post-processing algorithms that apply quality control and corrections to CPR measurements and derive key geophysical variables such as hydrometeor locations and best estimates of particle sedimentation fall velocities.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
David Patrick Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
EGUsphere, https://doi.org/10.5194/egusphere-2023-384, https://doi.org/10.5194/egusphere-2023-384, 2023
Short summary
Short summary
The Earth Clouds and Radiation Explorer mission (EarthCARE) is an upcoming multi-instrument cloud-aerosol-radiation oriented satellite for climate and weather applications. For this satellite mission to be successful, the development and implementation of new techniques for turning the measured raw signals into useful data is required. This paper describes how atmospheric model data was used as the basis for creating realistic high-resolution simulated data sets to facilitate this process.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, https://doi.org/10.5194/acp-22-10527-2022, 2022
Short summary
Short summary
This study explores how increased aerosol particles impact tropical sea breeze cloud systems under different environments and how a range of environments modulate these cloud responses. Overall, sea breeze flows and clouds that develop therein become weaker due to interactions between aerosols, sunlight, and land surface. In addition, surface rainfall also decreases with more aerosol particles. Weakening of cloud and rain with more aerosols is found irrespective of 130 different environments.
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys., 22, 7405–7416, https://doi.org/10.5194/acp-22-7405-2022, https://doi.org/10.5194/acp-22-7405-2022, 2022
Short summary
Short summary
Drizzle (small rain droplets) is an important component of warm clouds; however, its existence is poorly understood. In this study, we capitalized on a machine-learning algorithm to develop a drizzle detection method. We applied this algorithm to investigate drizzle occurrence and found out that drizzle is far more ubiquitous than previously thought. This study demonstrates the ubiquitous nature of drizzle in clouds and will improve understanding of the associated microphysical process.
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Short summary
We present an instrument simulator for a new sensor, WIVERN (WInd VElocity Radar Nephoscope), a conically scanning radar payload with Doppler capabilities, recently down-selected as one of the four candidates for the European Space Agency Earth Explorer 11 program. The mission aims at measuring horizontal winds in cloudy areas. The simulator is instrumental in the definition and consolidation of the mission requirements and the evaluation of mission performances.
Russell J. Perkins, Peter J. Marinescu, Ezra J. T. Levin, Don R. Collins, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 22, 6197–6215, https://doi.org/10.5194/acp-22-6197-2022, https://doi.org/10.5194/acp-22-6197-2022, 2022
Short summary
Short summary
We used 5 years (2009–2013) of aerosol and cloud condensation nuclei (CCN) data from a total of seven instruments housed at the Southern Great Plains site, which were merged into a quality-controlled, continuous dataset of CCN spectra at ~45 min resolution. The data cover all seasons, are representative of a rural, agricultural mid-continental site, and are useful for model initialization and validation. Our analysis of this dataset focuses on seasonal and hourly variability.
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058, https://doi.org/10.5194/acp-21-14039-2021, https://doi.org/10.5194/acp-21-14039-2021, 2021
Short summary
Short summary
This numerical study provides insights into the sensitivity of shallow-cumulus dilution to geostrophic vertical wind profile. The cumulus dilution is strongly sensitive to vertical wind shear in the cloud layer, with shallow cumuli being more diluted in sheared environments. On the other hand, wind shear in the subcloud layer leads to less diluted cumuli. The sensitivities are explained by jointly considering the impacts of vertical velocity and the properties of the entrained air.
Mariko Oue, Pavlos Kollias, Sergey Y. Matrosov, Alessandro Battaglia, and Alexander V. Ryzhkov
Atmos. Meas. Tech., 14, 4893–4913, https://doi.org/10.5194/amt-14-4893-2021, https://doi.org/10.5194/amt-14-4893-2021, 2021
Short summary
Short summary
Multi-wavelength radar measurements provide capabilities to identify ice particle types and growth processes in clouds beyond the capabilities of single-frequency radar measurements. This study introduces Doppler velocity and polarimetric radar observables into the multi-wavelength radar reflectivity measurement to improve identification analysis. The analysis clearly discerns snowflake aggregation and riming processes and even early stages of riming.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
Marek Jacob, Pavlos Kollias, Felix Ament, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 5757–5777, https://doi.org/10.5194/gmd-13-5757-2020, https://doi.org/10.5194/gmd-13-5757-2020, 2020
Short summary
Short summary
We compare clouds in different cloud-resolving atmosphere simulations with airborne remote sensing observations. The focus is on warm shallow clouds in the Atlantic trade wind region. Those clouds are climatologically important but challenging for climate models. We use forward operators to apply instrument-specific thresholds for cloud detection to model outputs. In this comparison, the higher-resolution model better reproduces the layered cloud structure.
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 20, 13217–13239, https://doi.org/10.5194/acp-20-13217-2020, https://doi.org/10.5194/acp-20-13217-2020, 2020
Short summary
Short summary
This numerical study provides insights into selected environmental sensitivities of shallow-cumulus dilution. Among the parameters under consideration, the dilution of the cloud cores is strongly sensitive to continentality and cloud-layer relative humidity and weakly sensitive to subcloud- and cloud-layer depths. The impacts of all four parameters are interpreted using a similarity theory of shallow cumulus and buoyancy-sorting arguments.
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020, https://doi.org/10.5194/amt-13-4865-2020, 2020
Short summary
Short summary
Warm rain accounts for slightly more than 30 % of the total rain amount and 70 % of the total rain area in the tropical belt and usually appears in kilometer-size cells. Spaceborne radars adopting millimeter wavelengths are excellent tools for detecting such precipitation types and for separating between the cloud and rain components. Our work highlights the benefits of operating multifrequency radars and discusses the impact of antenna footprints in quantitative estimates of liquid water paths.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Katia Lamer, Pavlos Kollias, Alessandro Battaglia, and Simon Preval
Atmos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-13-2363-2020, https://doi.org/10.5194/amt-13-2363-2020, 2020
Short summary
Short summary
According to ground-based radar observations, 50 % of liquid low-level clouds over the Atlantic extend below 1.2 km and are thinner than 400 m, thus limiting their detection from space. Using an emulator, we estimate that a 250 m resolution radar would capture cloud base better than the CloudSat radar which misses about 52 %. The more sensitive EarthCARE radar is expected to capture cloud cover but stretch cloud. This calls for the operation of interlaced pulse modes for future space missions.
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary
Short summary
We developed the Cloud-resolving model Radar SIMulator (CR-SIM) capable of apples-to-apples comparisons between the multiwavelength, zenith-pointing, and scanning radar and multi-remote-sensing (radar and lidar) observations and the high-resolution atmospheric model output. Applications of CR-SIM as a virtual observatory operator aid interpretation of the differences and improve understanding of the representativeness errors due to the sampling limitations of the ground-based measurements.
Jennie Bukowski and Susan C. van den Heever
Atmos. Chem. Phys., 20, 2967–2986, https://doi.org/10.5194/acp-20-2967-2020, https://doi.org/10.5194/acp-20-2967-2020, 2020
Short summary
Short summary
This paper seeks to better our understanding of how dust storms are represented in a weather model. Depending on how well the model can represent the storm, it can change the dust forecast significantly. This is important for predictions of air quality and visibility; as dust can heat and cool the air in its environment, it is also crucial for calculating the Earth's energy budget. Here, we communicate the uncertainty in a dust model and the effect that it may have on dust forecasts.
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech., 12, 5817–5828, https://doi.org/10.5194/amt-12-5817-2019, https://doi.org/10.5194/amt-12-5817-2019, 2019
Short summary
Short summary
In-cloud supersaturation is crucial for droplet activation, growth, and drizzle initiation but is poorly known and hardly measured. Here we provide a novel method to estimate supersaturation fluctuation in stratocumulus clouds using remote-sensing measurements, and results show that our estimated supersaturation agrees reasonably well with in situ measurements. Our method provides a unique way to estimate supersaturation in stratocumulus clouds from long-term ground-based observations.
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, https://doi.org/10.5194/gmd-12-4551-2019, 2019
Short summary
Short summary
We present tobac (Tracking and Object-Based Analysis of Clouds), a newly developed framework for tracking and analysing clouds in different types of datasets. It provides a flexible new way to include the evolution of individual clouds in a wide range of analyses. It is developed as a community project to provide a common basis for the inclusion of existing tracking algorithms and the development of new analyses that involve tracking clouds and other features in geoscientific research.
Peter J. Marinescu, Ezra J. T. Levin, Don Collins, Sonia M. Kreidenweis, and Susan C. van den Heever
Atmos. Chem. Phys., 19, 11985–12006, https://doi.org/10.5194/acp-19-11985-2019, https://doi.org/10.5194/acp-19-11985-2019, 2019
Short summary
Short summary
We characterized and provided fits for the seasonal aerosol size distributions (7 nm–14 µm diameter) at a North American, long–term surface site (SGP), which can be applied to models. Key cycles on timescales of several hours to weeks were also assessed using power spectra for various aerosol size ranges. One key finding is the consistent presence of diurnal cycles in the smallest particles in each season, providing insights into the formation and roles of new particle formation at SGP.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019, https://doi.org/10.5194/amt-12-5019-2019, 2019
Short summary
Short summary
An improved understanding of Arctic mixed-phase clouds and their contribution to Arctic warming can be achieved by observations from airborne platforms with remote sensing instruments. Such an instrument is MiRAC combining active and passive techniques to gain information on the distribution of clouds, the occurrence of precipitation, and the amount of liquid and ice within the cloud. Operated during a campaign in Arctic summer, it could observe lower clouds often not seen by spaceborne radars.
Pavlos Kollias, Bernat Puigdomènech Treserras, and Alain Protat
Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019, https://doi.org/10.5194/amt-12-4949-2019, 2019
Short summary
Short summary
Profiling millimeter-wavelength radars are the cornerstone instrument of surface-based observatories. Calibrating these radars is important for establishing a long record of observations suitable for model evaluation and improvement. Here, the CloudSat CPR is used to assess the calibration of a record over 10 years long of ARM cloud radar observations (a total of 44 years). The results indicate that correction coefficients are needed to improve record reliability and usability.
Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias
Atmos. Meas. Tech., 12, 4931–4947, https://doi.org/10.5194/amt-12-4931-2019, https://doi.org/10.5194/amt-12-4931-2019, 2019
Short summary
Short summary
This article describes the three newly deployed second-generation radar of the Atmospheric Radiation Measurement program. Techniques to retrieve precipitation rate from their measurements are presented: noise and clutter filtering, gas and liquid attenuation correction, and radar reflectivity calibration. Rain rate for a 40 km radius domain around Graciosa estimated from all three radar differ, which highlights the need to consider sensor capabilities when interpreting radar measurements.
Melville E. Nicholls, Warren P. Smith, Roger A. Pielke Sr., Stephen M. Saleeby, and Norman B. Wood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-569, https://doi.org/10.5194/acp-2019-569, 2019
Preprint withdrawn
Short summary
Short summary
Numerical modeling simulations indicate that radiation significantly accelerates tropical cyclogenesis. This study provides evidence that the primary physical mechanism is nocturnal longwave cooling of the environment. This generates weak upward motion in the core of the system that over the course of a night promotes convective activity and is responsible for a diurnal cycle. Understanding the role of radiation is likely to lead to improved forecasting of these major weather events.
Stephen M. Saleeby, Susan C. van den Heever, Jennie Bukowski, Annette L. Walker, Jeremy E. Solbrig, Samuel A. Atwood, Qijing Bian, Sonia M. Kreidenweis, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys., 19, 10279–10301, https://doi.org/10.5194/acp-19-10279-2019, https://doi.org/10.5194/acp-19-10279-2019, 2019
Short summary
Short summary
This study seeks to understand how intense dust storms impact the heating and cooling of the land surface and atmosphere. Dust storms that are intense enough to substantially impact visibility can also alter how much sunlight reaches the surface during the day and how much heat is trapped in the atmosphere at night. These radiation changes can impact the temperature of the atmosphere and impact the weather in the vicinity.
Alessandro Battaglia and Pavlos Kollias
Atmos. Meas. Tech., 12, 3335–3349, https://doi.org/10.5194/amt-12-3335-2019, https://doi.org/10.5194/amt-12-3335-2019, 2019
Short summary
Short summary
This work investigates the potential of an innovative differential absorption radar for retrieving relative humidity inside ice clouds. The radar exploits the strong spectral dependence of the water vapour absorption for frequencies close to the 183 GHz water vapour band.
Results show that observations from a system with 4–6 frequencies can provide
novel information for understanding the formation and growth of ice crystals.
Stacey Kawecki and Susan van den Heever
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-399, https://doi.org/10.5194/acp-2019-399, 2019
Preprint withdrawn
Short summary
Short summary
This work examines how the topographic height and diameter of an island influence where and when precipitation falls, and why these patterns change. Using a numerical weather model, we systematically increased island orographic heights and diameters. We find that increasing orography increases precipitation amounts, regardless of island diameter size. Precipitation increases because changing the topography alters where moisture and lift occur, which are the prime ingredients for precipitation.
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019, https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Short summary
This study investigated impacts of the selected radar volume coverage pattern, the sampling time period, the number of radars used, and the added value of advection correction on the retrieval of vertical air motion from a multi-Doppler-radar technique. The results suggest that the use of rapid-scan radars can substantially improve the quality of wind retrievals and that the retrieved wind field needs to be carefully used considering the limitations of the radar observing system.
Ting-Chi Wu, Milija Zupanski, Stephen Saleeby, Anton Kliewer, Lewis Grasso, Qijing Bian, Samuel A. Atwood, Yi Wang, and Jun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1249, https://doi.org/10.5194/acp-2018-1249, 2018
Revised manuscript not accepted
Guangjie Zheng, Yang Wang, Allison C. Aiken, Francesca Gallo, Michael P. Jensen, Pavlos Kollias, Chongai Kuang, Edward Luke, Stephen Springston, Janek Uin, Robert Wood, and Jian Wang
Atmos. Chem. Phys., 18, 17615–17635, https://doi.org/10.5194/acp-18-17615-2018, https://doi.org/10.5194/acp-18-17615-2018, 2018
Short summary
Short summary
Here, we elucidate the key processes that drive marine boundary layer (MBL) aerosol size distribution in the eastern North Atlantic (ENA) using long-term measurements. The governing equations of particle concentration are established for different modes. Particles entrained from the free troposphere represent the major source of MBL cloud condensation nuclei (CCN), contributing both directly to CCN population and indirectly by supplying Aitken-mode particles that grow to CCN in the MBL.
Katia Lamer, Ann M. Fridlind, Andrew S. Ackerman, Pavlos Kollias, Eugene E. Clothiaux, and Maxwell Kelley
Geosci. Model Dev., 11, 4195–4214, https://doi.org/10.5194/gmd-11-4195-2018, https://doi.org/10.5194/gmd-11-4195-2018, 2018
Short summary
Short summary
Weather and climate predictions of cloud, rain, and snow occurrence remain uncertain, in part because guidance from observation is incomplete. We present a tool that transforms predictions into observations from ground-based remote sensors. Liquid water and ice occurrence errors associated with the transformation are below 8 %, with ~ 3 % uncertainty. This (GO)2-SIM forward-simulator tool enables better evaluation of cloud, rain, and snow occurrence predictions using available observations.
Fan Yang, Pavlos Kollias, Raymond A. Shaw, and Andrew M. Vogelmann
Atmos. Chem. Phys., 18, 7313–7328, https://doi.org/10.5194/acp-18-7313-2018, https://doi.org/10.5194/acp-18-7313-2018, 2018
Short summary
Short summary
Cloud droplet size distribution (CDSD), which is related to cloud albedo and lifetime, is usually observed broader than predicted from adiabatic parcel calculations. Results in this study show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation. Our results suggest that it is important to consider both curvature and solute effects before and after cloud droplet activation in a 3-D cloud model.
Damao Zhang, Zhien Wang, Pavlos Kollias, Andrew M. Vogelmann, Kang Yang, and Tao Luo
Atmos. Chem. Phys., 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018, https://doi.org/10.5194/acp-18-4317-2018, 2018
Short summary
Short summary
Ice production in atmospheric clouds is important for global water cycle and radiation budget. Active satellite remote sensing measurements are analyzed to quantitatively study primary ice particle production in stratiform mixed-phase clouds on a global scale. We quantify the geographic and seasonal variations of ice production and their correlations with aerosol, especially mineral dust activities. The results can be used to evaluate mixed-phased clouds simulations by global climate models.
Xiaoli Zhou, Andrew S. Ackerman, Ann M. Fridlind, Robert Wood, and Pavlos Kollias
Atmos. Chem. Phys., 17, 12725–12742, https://doi.org/10.5194/acp-17-12725-2017, https://doi.org/10.5194/acp-17-12725-2017, 2017
Short summary
Short summary
Shallow maritime clouds make a well-known transition from stratocumulus to trade cumulus with flow from the subtropics equatorward. Three-day large-eddy simulations that investigate the potential influence of overlying African biomass burning plumes during that transition indicate that cloud-related impacts are likely substantially cooling to negligible at the top of the atmosphere, with magnitude sensitive to background and perturbation aerosol and cloud properties.
Kirk W. North, Mariko Oue, Pavlos Kollias, Scott E. Giangrande, Scott M. Collis, and Corey K. Potvin
Atmos. Meas. Tech., 10, 2785–2806, https://doi.org/10.5194/amt-10-2785-2017, https://doi.org/10.5194/amt-10-2785-2017, 2017
Short summary
Short summary
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are compared against collocated profiling radars and retrieved from an upward iteration integration iterative technique to characterize their veracity. The retrieved vertical air motions are generally within 1–2 m s−1 of agreement with profiling radars and better solution than the upward integration technique, and therefore can be used as a means to improve parameterizations in numerical models moving forward.
Claudia Acquistapace, Stefan Kneifel, Ulrich Löhnert, Pavlos Kollias, Maximilian Maahn, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, https://doi.org/10.5194/amt-10-1783-2017, 2017
Short summary
Short summary
The goal of the paper is to understand what the optimal cloud radar settings for drizzle detection are. The number of cloud radars in the world has increased in the last 10 years and it is important to develop strategies to derive optimal settings which can be applied to all radar systems. The study is part of broader research focused on better understanding the microphysical process of drizzle growth using ground-based observations.
R. B. Seigel, S. C. van den Heever, and S. M. Saleeby
Atmos. Chem. Phys., 13, 4467–4485, https://doi.org/10.5194/acp-13-4467-2013, https://doi.org/10.5194/acp-13-4467-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Liquid cloud optical property retrieval and associated uncertainties using multi-angular and bispectral measurements of the airborne radiometer OSIRIS
Global evaluation of Doppler velocity errors of EarthCARE cloud-profiling radar using a global storm-resolving simulation
Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product
Cloud mask algorithm from the EarthCARE Multi-Spectral Imager: the M-CM products
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
A neural network-based method for generating synthetic 1.6 μm near-infrared satellite images
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Optimizing cloud motion estimation on the edge with phase correlation and optical flow
A semi-Lagrangian method for detecting and tracking deep convective clouds in geostationary satellite observations
The CHROMA cloud-top pressure retrieval algorithm for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission
Deep convective cloud system size and structure across the global tropics and subtropics
Segmentation of polarimetric radar imagery using statistical texture
High-spatial-resolution retrieval of cloud droplet size distribution from polarized observations of the cloudbow
Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Numerical Model Generation of Test Frames for Pre-launch Studies of EarthCARE’s Retrieval Algorithms and Data Management System
Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network
Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Ice water path retrievals from Meteosat-9 using quantile regression neural networks
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network
Top-of-the-atmosphere reflected shortwave radiative fluxes from GOES-R
A kriging-based analysis of cloud liquid water content using CloudSat data
High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
The surface longwave cloud radiative effect derived from space lidar observations
Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals
An all-sky camera image classification method using cloud cover features
Determination of atmospheric column condensate using active and passive remote sensing technology
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Anja Hünerbein, Sebastian Bley, Stefan Horn, Hartwig Deneke, and Andi Walther
Atmos. Meas. Tech., 16, 2821–2836, https://doi.org/10.5194/amt-16-2821-2023, https://doi.org/10.5194/amt-16-2821-2023, 2023
Short summary
Short summary
The Multi-Spectral Imager (MSI) on board the EarthCARE satellite will provide the information needed for describing the cloud and aerosol properties in the cross-track direction, complementing the measurements from the Cloud Profiling Radar, Atmospheric Lidar and Broad-Band Radiometer. The accurate discrimination between clear and cloudy pixels is an essential first step. Therefore, the cloud mask algorithm provides a cloud flag, cloud phase and cloud type product for the MSI observations.
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023, https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Short summary
This paper describes EarthCARE’s L2 product ACM-3D. It includes the scene construction algorithm (SCA) used to produce the indexes for reconstructing 3D atmospheric scene based on satellite nadir retrievals. It also provides the information about the buffer zone sizes of 3D assessment domains and the ranking scores for selecting the best 3D assessment domains. These output variables are needed to run 3D radiative transfer models for the radiative closure assessment of EarthCARE’s L2 retrievals.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
EGUsphere, https://doi.org/10.5194/egusphere-2023-353, https://doi.org/10.5194/egusphere-2023-353, 2023
Short summary
Short summary
This study extends MFASIS to simulate 1.6 μm NIR channel reflectances with a neural network, enabling its use in model evaluation and data assimilation. A two-layer model was developed for cloud structure with optimized reflectance errors using IFS forecasts and ICON-D2 hindcasts. Mean absolute reflectance error achieved was 0.01 or less, much smaller than typical differences between observations and models.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023, https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
Short summary
Forward modeling of spaceborne millimeter-wave radar composed of eight submodules is presented. We quantify the uncertainties in radar reflectivity that may be caused by the physical model parameters via a sensitivity analysis. The simulations with improved and conventional settings are compared with CloudSat data, and the simulation results are evaluated and analyzed. The results are instructive to the optimization of forward modeling and microphysical parameter retrieval.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023, https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary
Short summary
We studied the stability of a blockwise phase correlation (PC) method to estimate cloud motion using a total sky imager (TSI). Shorter frame intervals and larger block sizes improve stability, while image resolution and color channels have minor effects. Raindrop contamination can be identified by the rotational motion of the TSI mirror. The correlations of cloud motion vectors (CMVs) from the PC method with wind data vary from 0.38 to 0.59. Optical flow vectors are more stable than PC vectors.
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech., 16, 1043–1059, https://doi.org/10.5194/amt-16-1043-2023, https://doi.org/10.5194/amt-16-1043-2023, 2023
Short summary
Short summary
Geostationary weather satellites have been used to detect storm clouds since their earliest applications. However, this task remains difficult as imaging satellites cannot observe the strong vertical winds that are characteristic of storm clouds. Here we introduce a new method that allows us to detect the early development of storms and continue to track them throughout their lifetime, allowing us to study how their early behaviour affects subsequent weather.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-6, https://doi.org/10.5194/amt-2023-6, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
A new database is constructed from satellites comprising millions of deep convective clouds that spans the global tropics and subtropics and greater than 20 years. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirical study of the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2023-181, https://doi.org/10.5194/egusphere-2023-181, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022, https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
Short summary
Vertical profiles of latent heating are derived from GOES-16 to be used in convective initialization. They are compared with other latent heating products derived from NEXRAD and GPM satellites, and the results show that their values are very similar to the radar-derived products. Finally, using latent heating derived from GOES-16 for convective initialization shows improvements in precipitation forecasts, which are comparable to the results using latent heating derived from NEXRAD.
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-300, https://doi.org/10.5194/amt-2022-300, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The Level 2 algorithms development of EarthCARE satellite mission requires realistic three-dimensional cloud and aerosols scenes along the satellite orbits. One of the best way to produce these scenes is to use high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This manuscript describes the production and validation of three EarthCARE test scenes.
Wenyu Wang, Zhenzhan Wang, Qiurui He, and Lanjie Zhang
Atmos. Meas. Tech., 15, 6489–6506, https://doi.org/10.5194/amt-15-6489-2022, https://doi.org/10.5194/amt-15-6489-2022, 2022
Short summary
Short summary
This paper uses a neural network approach to retrieve the ice water path from FY-3B/MWHS polarimetric measurements, focusing on its unique 150 GHz quasi-polarized channels. The Level 2 product of CloudSat is used as the reference value for the neural network. The results show that the polarization information is helpful for the retrieval in scenes with thicker cloud ice, and the 150 GHz channels give a significant improvement compared to using only 183 GHz channels.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Short summary
In this study, a framework for processing the Doppler spectra observations of a multi-mode pulse compression Ka–Ku cloud radar system is presented. We first proposed an approach to identify and remove the clutter signals in the Doppler spectrum. Then, we developed a new algorithm to remove the range sidelobe at the modes implementing the pulse compression technique. The radar observations from different modes were then merged using the shift-then-average method.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, https://doi.org/10.5194/amt-15-5701-2022, 2022
Short summary
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Rachel T. Pinker, Yingtao Ma, Wen Chen, Istvan Laszlo, Hongqing Liu, Hye-Yun Kim, and Jaime Daniels
Atmos. Meas. Tech., 15, 5077–5094, https://doi.org/10.5194/amt-15-5077-2022, https://doi.org/10.5194/amt-15-5077-2022, 2022
Short summary
Short summary
Scene-dependent narrow-to-broadband transformations are developed to facilitate the use of observations from the Advanced Baseline Imager (ABI), the primary instrument on GOES-R, to derive surface shortwave radiative fluxes. This is a first NOAA product at the high resolution of about 5 k over the contiguous United States (CONUS) region. The product is archived and can be downloaded from the NOAA Comprehensive Large Array-data Stewardship System (CLASS).
Jean-Marie Lalande, Guillaume Bourmaud, Pierre Minvielle, and Jean-François Giovannelli
Atmos. Meas. Tech., 15, 4411–4429, https://doi.org/10.5194/amt-15-4411-2022, https://doi.org/10.5194/amt-15-4411-2022, 2022
Short summary
Short summary
In this paper we describe the implementation of an interpolation–prediction estimator applied to cloud properties derived from CloudSat observations. The objective is to evaluate the uncertainty associated with the estimated quantity. The model developed in this study can be valuable for satellite applications (GPS, telecommunication) as well as for cloud product comparisons. This paper is didactic and beneficial for anyone interested in kriging estimators.
Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling
Atmos. Meas. Tech., 15, 4257–4270, https://doi.org/10.5194/amt-15-4257-2022, https://doi.org/10.5194/amt-15-4257-2022, 2022
Short summary
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022, https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Short summary
We use the C-band POLDIRAD and the Ka-band MIRA-35 to perform snowfall dual-wavelength polarimetric radar measurements. We develop an ice microphysics retrieval for mass, apparent shape, and median size of the particle size distribution by comparing observations to T-matrix ice spheroid simulations while varying the mass–size relationship. We furthermore show how the polarimetric measurements from POLDIRAD help to narrow down ambiguities between ice particle shape and size.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022, https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu
Atmos. Meas. Tech., 15, 3629–3639, https://doi.org/10.5194/amt-15-3629-2022, https://doi.org/10.5194/amt-15-3629-2022, 2022
Short summary
Short summary
The all-sky camera images can reflect the local cloud cover, which is considerable for astronomical observatory site selection. Therefore, the realization of automatic classification of the images is very important. In this paper, three cloud cover features are proposed to classify the images. The proposed method is evaluated on a large dataset, and the method achieves an accuracy of 96.58 % and F1_score of 96.24 %, which greatly improves the efficiency of automatic processing of the images.
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Cited articles
Adachi, T. and Mashiko, W.: High temporal-spatial resolution observation of tornadogenesis in a shallow supercell associated with Typhoon Hagibis (2019) using phased array weather radar, Geophys. Res. Lett., 47, e2020GL089635, https://doi.org/10.1029/2020GL089635, 2020.
Barnes, S. L.: A Technique for maximizing details in numerical weather map
analysis, J. Appl. Meteorol., 3, 396–409, 1964.
Billam, E. R. and Harvey, D. H.: MESAR – An advanced experimental phased array radar, Proceedings of the IEEE International Radar Conference, 19–21 October 1987, London, UK, 37–40, 1987.
Bousquet, O., Tabary, P., and Parent du Chtelet, J.: Operational
multiple-Doppler wind retrieval inferred from long-range radial velocity
measurements, J. Appl. Meteor. Climatol., 47, 2929–2945,
https://doi.org/10.1175/2008JAMC1878.1, 2008.
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist
nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928,
2002.
Clark, T. L., Harris, F. I., and Mohr, C. G.: Errors in wind fields derived
from multiple-Doppler radars: Random errors and temporal errors associated
with advection and evolution, J. Appl. Meteorol., 19, 1273–1284, 1980.
Collis, C., Protat, A., May, P. T., and Williams, C.: Statistics of storm
updraft velocities from TWP-ICE including verification with profiling
measurements, J. Appl. Meteor. Climatol., 52, 1909–1922,
https://doi.org/10.1175/JAMC-D-12-0230.1, 2013.
Collis, S., Protat, A., and Chung, K.-S.: The effect of radial velocity
gridding artifacts on variationally retrieved vertical velocities, J. Atmos.
Ocean. Tech., 27, 1239–1246, 2010.
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001: Current status and future
directions, Meteor. Atmos. Phys., 82, 5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003.
Fridlind, A. M., van Lier-Walqui, M., Collis, S., Giangrande, S. E., Jackson, R. C., Li, X., Matsui, T., Orville, R., Picel, M. H., Rosenfeld, D., Ryzhkov, A., Weitz, R., and Zhang, P.: Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking, Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, 2019.
Given, T. and Ray, P. S.: Response of a two-dimensional dual-Doppler radar
wind synthesis, J. Atmos. Ocean. Tech., 11, 239–255,
https://doi.org/10.1175/1520-0426(1994)011<0239:ROATDD>2.0.CO;2, 1994.
Grant, L. D. and van den Heever, S. C.: Cold pool and precipitation responses to aerosol loading: modulation by dry layers, J. Atmos. Sci., 72, 1398–1408, 2015.
Griffin, C. B., Bodine, D. J., Kurdzo, J. M., Mahre, A., and Palmer, R. D.:
High-temporal resolution observations of the 27 May 2015 Canadian, Texas
tornado using the Atmospheric Imaging Radar, Mon. Weather Rev., 147, 873–891, 2019.
Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019a.
Heikenfeld, M., Jones, W. K., Senf, F., and Marinescu, P. J.: Tobac v1.2: Tracking and Object-Based Analysis of Clouds, GitHub [code], https://github.com/climate-processes/tobac (last access: 26 August 2022), 2019b.
Heinselman, P. L. and Torres, S. M.: High-temporal-resolution capabilities of the national weather radar testbed phased-array radar, J. Appl. Meteor. Climatol., 50, 579–593, 2011.
Hu, J., Rosenfeld, D., Zrnic, D., Williams, E., Zhang, P., Snyder, J. C.,
Ryzhkov, A., Hashimshoni, E., Zhang, R., and Weitz, R.: Tracking and
characterization of convective cells through their maturation into
stratiform storm elements using polarimetric radar and lightning detection,
Atmos. Res., 226, 192–207, https://doi.org/10.1016/j.atmosres.2019.04.015, 2019.
Jensen, M., Bruning, E., Collins, D., Fridlind, A., Kollias, P., Kuang, C.,
Rosenfeld, D., Ryzhkov, A., Varble, A., Brooks, S.D., Collis, S., Defer, E.,
Fan, J., Flynn, J., Giangrande, S., Griffin, R., Hu, J., Jackson, R.,
Kumjian, M., Logan, T., Matsui, T., McFarquhar, G., Nowotarski, C., Quaas,
J., Oue, M., Sheesley, R., Snyder, J., Stier, P., Usenko, S., van den
Heever, S., van Lier Walqui, M., Wang, Y., Xu, Y., and Zhang, G.: Tracking
Aerosol Convection Interactions ExpeRiment (TRACER) Science Plan, edited by:
Stafford, R., U.S. Department of Energy, DOE/SC-ARM-19-017, 2019.
Jensen, M. P., Petersen, W. A., Bansemer, A., Bharadwaj, N., Carey, L. D.,
Cecil, D. J., Collis, S. M., Del Genio, A. D., Dolan, B., Gerlach, J.,
Giangrande, S. E., Heymsfield, A., Heymsfield, G., Kollias, P., Lang, T. J.,
Nesbitt, S. W., Neumann, A., Poellot, M., Rutledge, S. A., Schwaller, M.,
Tokay, A., Williams, C. R., Wolff, D. B., Xie, S., and Zipser, E. J.: The Midlatitude Continental Convective Clouds Experiment (MC3E),
B. Am. Meteorol. Soc., 97, 1667–1686, 2016.
Jensen, M. P., Flynn, J. H., Judd, L. M., Kollias, P., Kuang, C.,
Mcfarquhar, G., Nadkarni, R., Powers, H., and Sullivan, J.: A
Succession of Cloud, Precipitation, Aerosol, and Air Quality Field
Experiments in the Coastal Urban Environment, B. Am. Meteorol. Soc., 103, 103–105, 2022.
Kang, C., Giangrande, S. E., Serbin, S. P., Campbell, P., Hickmon, N., and
Ritsche, M.: Science and Deployment Plan for the DOE 3rd Atmospheric
Radiation Measurement Mobile Facility in the Southeastern United States,
2021 AGU Fall Meeting, New Orleans and online, 13–17 December 2021,
https://www.arm.gov/uploads/2021_AGU_SE_US_TownHall_Slides.pdf (last access: 18 August 2022), 2021.
Khairoutdinov, M. F. and Randall, D.A.: Cloud-resolving modeling of the ARM
summer 1997 IOP: Model formulation, results, uncertainties and
sensitivities, J. Atmos. Sci., 60, 607–625, 2003.
Kollias, P., Luke, E., Oue, M., and Lamer, K.: Agile adaptive radar
sampling of fast-evolving atmospheric phenomena guided by satellite imagery
and surface cameras, Geophys. Res. Lett., 45, e2020GL088440,
https://doi.org/10.1029/2020GL088440, 2020.
Kollias, P., Luke, E., Tuftedal, K., Dubois, M., and Knapp, E. J.: Agile Weather Observations using a Dual-Polarization X-band Phased Array Radar, IEEE Radar Conference, 21–25 March 2022, New York, NY, USA, https://doi.org/10.1109/RadarConf2248738.2022.9764308, 2022.
Kumjian, M. R. and Ryzhkov, A. V.: Polarimetric signatures in supercell
thunderstorms, J. Appl. Meteor. Climatol., 47, 1940–1961, https://doi.org/10.1175/2007JAMC1874.1, 2008.
Kumjian, M. R., Khain, A. P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A. V.,
and Phillips V. T. J.: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model, J. Appl. Meteor. Climatol.,
53, 1820–1843, https://doi.org/10.1175/JAMC-D-13-0354.1, 2014.
Lamer, K., Tatarevic, A., Jo, I., and Kollias, P.: Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals, Atmos. Meas. Tech., 7, 1089–1103, https://doi.org/10.5194/amt-7-1089-2014, 2014.
L'Ecuyer, T., Petersen, W., and Moiseev, D.: Light Precipitation Validation
Experiment (LPVEx) Science Plan, NASA, https://ghrc.nsstc.nasa.gov/home/sites/default/files/lpvex_science_plan_June2010.pdf (last access: 11 July 2022), 2010.
Mahre, A., Kurdzo, J. M., Bodine, D. J., Griffin, C. B., and Palmer, R. D.:
Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 tornado at high
spatiotemporal resolution using the Atmospheric Imaging Radar, Mon. Weather
Rev., 146, 2103–2124, 2018.
Marinescu, P. J., Kennedy, P. C., Bell, M. M., Drager, A. J., Grant, L. D.,
Freeman, S. W., and van den Heever, S. C.: Updraft vertical velocity
observations and uncertainties in High Plains supercells using radiosondes
and radars, Mon. Weather Rev., 148, 4435–4452, https://doi.org/10.1175/MWR-D-20-0071.1, 2020.
Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I.,
Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., Matsui, T.,
Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.:
Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep
Convective Cloud Updrafts – A Multimodel Assessment, J. Atmos. Sci., 78, 1147–1172, 2021.
McLaughlin, D. J., Chandrasekar, V., Droegemeier, K., Frasier, S., Kurose, K., Junyent, F., Philips, B., Cruz-Pol, S., and Colom, J.: Distributed Collaborative Adaptive Sensing (DCAS) for Improved Detection, Understanding, and Prediction of Atmospheric Hazards, Ninth Symposium on
Integrated Observing and Assimilation Systems for the Atmosphere, Oceans,
and Land Surface (IOAS-AOLS), 10–13 January 2005, Boston, MA, USA, American Meteorological Society, https://ams.confex.com/ams/Annual2005/webprogram/Paper87890.html (last access: 18 August 2022), 2005.
Mishra, K. V., Krajewski, W. F., Goska, R., Ceynar, D., Seo, B., Kruger, A.,
Niemeier, J. J., Galvez, M. B., Thurai, M., Bringi, V. N., Tolstoy, L.,
Kucera, P. A., Petersen, W. A., Grazioli, J., and Pazmany, A. L.: Deployment
and Performance Analyses of High-Resolution Iowa XPOL Radar System during
the NASA IFloodS Campaign, J. Hydrometeorol., 17, 455–479,
2016.
ModEx Approach: Environmental System Science Program, U.S. DOE
Environmental System Science Program, https://ess.science.energy.gov,
last access: 11 May 2022.
Moroda, Y., Tsuboki, K., Satoh, S., Nakagawa, K., Ushio, T., and Shimizu, S.: Structure and Evolution of Precipitation Cores in an Isolated Convective Storm Observed by Phased Array Weather Radar, J. Meteorol. Soc. Jpn. Ser. II, 99, 765–784, https://doi.org/10.2151/jmsj.2021-038, 2021.
North, K. W., Oue, M., Kollias, P., Giangrande, S. E., Collis, S. M., and Potvin, C. K.: Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E, Atmos. Meas. Tech., 10, 2785–2806, https://doi.org/10.5194/amt-10-2785-2017, 2017.
Oue, M.: Radar simulator output used for tracking isolated convections, Stony Brook University Academin Commons, maintained by Stony Brook University Libraries Center for Scholarly Communication [data set],
https://commons.library.stonybrook.edu/somasdata/16, last access: 18 August 2022.
Oue, M., Inagaki, K., Shinoda, T., Ohigashi, T., Kouketsu, T., Kato, M., Tsuboki, K., and Uyeda, H.: Polarimetric Doppler radar analysis of orientation of a stationary rainband with changing orientations in July 2010, J. Meteorol. Soc. Jpn., 92, 457–481, https://doi.org/10.2151/jmsj.2014-503, 2014.
Oue, M., Kollias, P., Shapiro, A., Tatarevic, A., and Matsui, T.: Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals, Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019, 2019a.
Oue, M., Tatarevic, A., Kollias, P., Wang, D., and Yu, K.-M.: The Cloud Resolving Model Radar Simulator (CR-SIM) Version 3.3, SoMAS Research Data [code], https://commons.library.stonybrook.edu/somasdata/4/ (last access: 18 August 2022), 2019b.
Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020.
Potvin, C. K., Betten, D., Wicker, L. J., Elmore, K. L., and Biggerstaff, M.
I.: 3DVAR versus traditional dual-Doppler wind retrievals of a simulated
supercell thunderstorm, Mon. Weather Rev., 140, 3487–3494,
https://doi.org/10.1175/MWR-D-12-00063.1, 2012a.
Potvin, C. K., Wicker, L. J., and Shapiro A.: Assessing errors in
variational dual-Doppler wind syntheses of supercell thunderstorms observed
by storm-scale mobile radars, J. Atmos. Ocean. Tech., 29, 1009–1025,
https://doi.org/10.1175/JTECH-D-11-00177.1, 2012b.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J.,
Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell,
G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R.,
Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder,
C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.: The Weather Research
and Forecasting Model: Overview, System Efforts, and Future Directions,
B. Am. Meteorol. Soc., 98, 1717–1737, 2017.
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric Radar
Observation Operator for a Cloud Model with Spectral Microphysics, J. Appl.
Meteor. Climatol., 50, 873–894, 2011.
Saleeby, S. M. and van den Heever, S. C.: Developments in the CSU-RAMS Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and Radiation, J. Appl. Meteorol. Climatol., 52, 2601–2622, https://doi.org/10.1175/JAMC-D-12-0312.1, 2013.
Shusse, Y., Nakagawa, K., Takahashi, N., Satoh, S., and Iguchi, T.: Characteristics of polarimetric radar variables in three types of rainfalls in a Baiu front event over the East China Sea, J. Meteorol. Soc. Jpn., 87, 865–875, 2009.
Snyder, J. C., Bluestein, H., Venkatesh, V., and Frasier, S. J.: Observations of polarimetric signatures in supercells by an X-band mobile
Doppler radar, Mon. Weather Rev., 141, 3–29, https://doi.org/10.1175/MWR-D-12-00068.1, 2013.
Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K.
E., Lean, H. W., Nicol, J. C., and Plant, R. S.: The DYMECS Project: A
Statistical Approach for the Evaluation of Convective Storms in
High-Resolution NWP Models, B. Am. Meteorol. Soc., 96, 939–951, 2015.
Steiner, M., Houze Jr., R. A., and Yuter, S. E.: Climatological
Characterization of Three-Dimensional Storm Structure from Operational Radar
and Rain Gauge Data, J. Appl. Meteor. Climatol., 34, 1978–2007, 1995.
van den Heever, S. C., Fridlind, A. M., Marinescu, P. J., Heikenfeld, M., White, B., and Stier, P.: Aerosol-Cloud-Precipitation-Climate (ACPC) initiative: Deep Convective Cloud Group roadmap, ACPC Rep., 13 pp., http://acpcinitiative.org/Docs/ACPC_DCC_Roadmap_171019.pdf (last access: 23 August 2022), 2018.
van den Heever, S. C., Grant, L. D., Freeman, S. W., Marinescu, P. J.,
Barnum, J., Bukowski, J., Casas, E., Drager, A. J., Fuchs, B., Herman, G.
R., Hitchcock, S. M., Kennedy, P. C., Nielsen, E. R., Park, J. M.,
Rasmussen, K., Razin, M. N., Riesenberg, R., Dellaripa, E. R., Slocum, C.
J., Toms, B. A., and van den Heever, A.: The Colorado State University
Convective Cloud Outflows and UpDrafts Experiment (C3LOUD-Ex), B. Am. Meteorol. Soc., 102, E1283–E1305, 2021.
Wurman, J.: The DOW mobile multiple-Doppler network. Preprints, 30th
Int. Conf. on Radar Meteorology, 19–24 July 2001, Munich, Germany, Am. Meteorol. Soc., 95–97, https://ams.confex.com/ams/30radar/techprogram/paper_21572.htm (last access: 18 August 2022), 2001.
Wurman, J., Dowell, D., Richardson, Y., Markowski, P., Rasmussen, E.,
Burgess, D., Wicker, L., and Bluestein, H. B.: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2, B. Am. Meteorol. Soc., 93, 1147–1170, https://doi.org/10.1175/BAMS-D-11-00010.1, 2012.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc.,
141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
This study provides an optimization of radar observation strategies to better capture convective...