Articles | Volume 16, issue 18
https://doi.org/10.5194/amt-16-4289-2023
https://doi.org/10.5194/amt-16-4289-2023
Research article
 | 
28 Sep 2023
Research article |  | 28 Sep 2023

An ensemble method for improving the estimation of planetary boundary layer height from radiosonde data

Xi Chen, Ting Yang, Zifa Wang, Futing Wang, and Haibo Wang

Related authors

Simulated photochemical response to observational constraints on aerosol vertical distribution over North China
Xi Chen, Ke Li, Ting Yang, Xipeng Jin, Lei Chen, Yang Yang, Shuman Zhao, Bo Hu, Bin Zhu, Zifa Wang, and Hong Liao
Atmos. Chem. Phys., 25, 9151–9168, https://doi.org/10.5194/acp-25-9151-2025,https://doi.org/10.5194/acp-25-9151-2025, 2025
Short summary
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Meteorological influence on surface ozone trends in China: Assessing uncertainties caused by multi-dataset and multi-method
Xueqing Wang, Jia Zhu, Guanjie Jiao, Xi Chen, Zhenjiang Yang, Lei Chen, Xipeng Jin, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1880,https://doi.org/10.5194/egusphere-2025-1880, 2025
Short summary
Revisiting the high tropospheric ozone over southern Africa: role of biomass burning and anthropogenic emissions
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 25, 4455–4475, https://doi.org/10.5194/acp-25-4455-2025,https://doi.org/10.5194/acp-25-4455-2025, 2025
Short summary
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022,https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary

Cited articles

Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. 
Bian, J., Chen, H., Voemel, H., Duan, Y., Xuan, Y., and Lue, D.: Intercomparison of Humidity and Temperature Sensors: GTS1, Vaisala RS80, and CFH, Adv. Atmos. Sci., 28, 139–146, https://doi.org/10.1007/s00376-010-9170-8, 2011. 
Brooks, I. M.: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Tech., 20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2, 2003. 
Dai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., and Zhou, M.: Determining Boundary-Layer Height from Aircraft Measurements, Bound.-Lay. Meteorol., 152, 277–302, https://doi.org/10.1007/s10546-014-9929-z, 2014. 
Davis, K. J., Gamage, N., Hagelberg, C. R., Kiemle, C., Lenschow, D. H., and Sullivan, P. P.: An objective method for deriving atmospheric structure from airborne lidar observations, J. Atmos. Ocean. Tech., 17, 1455–1468, https://doi.org/10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2, 2000. 
Download
Short summary
Uncertainties remain great in the planetary boundary layer height (PBLH) determination from radiosonde, especially during the transition period of different PBL regimes. We combine seven existing methods along with statistical modification on gradient-based methods. We find that the ensemble method can eliminate the overestimation of PBLH and reduce the inconsistency between individual methods. The ensemble method improves the effectiveness of PBLH determination to 62.6 %.
Share