Articles | Volume 16, issue 4
https://doi.org/10.5194/amt-16-997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski
CORRESPONDING AUTHOR
Laboratoire Atmosphères, Observations Spatiales (LATMOS), UVSQ, Sorbonne Université, CNRS, IPSL, Guyancourt, France
Sergey Khaykin
Laboratoire Atmosphères, Observations Spatiales (LATMOS), UVSQ, Sorbonne Université, CNRS, IPSL, Guyancourt, France
Alain Hauchecorne
Laboratoire Atmosphères, Observations Spatiales (LATMOS), UVSQ, Sorbonne Université, CNRS, IPSL, Guyancourt, France
Robin Wing
Laboratoire Atmosphères, Observations Spatiales (LATMOS), UVSQ, Sorbonne Université, CNRS, IPSL, Guyancourt, France
now at: Leibniz Institute for Atmospheric Physics, Kühlungsborn, Germany
Jean-Pierre Cammas
Observatoire des Sciences de l'Univers de La Réunion (OSU-R, UAR3365), Saint-Denis, Réunion, France
Yann Hello
Observatoire des Sciences de l'Univers de La Réunion (OSU-R, UAR3365), Saint-Denis, Réunion, France
Philippe Keckhut
Laboratoire Atmosphères, Observations Spatiales (LATMOS), UVSQ, Sorbonne Université, CNRS, IPSL, Guyancourt, France
Related authors
No articles found.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2733, https://doi.org/10.5194/egusphere-2023-2733, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-210, https://doi.org/10.5194/amt-2023-210, 2023
Preprint under review for AMT
Short summary
Short summary
Measurements of the transported smoke layers in 2023 were performed with a lidar in Lille and a 5-channel fluorescence lidar in Moscow. Results show in boundary layer, the peak of fluorescence is at 438 nm while in smoke layer it shifts to longer wavelengths. The fluorescence depolarization is typically 45% to 55%. The depolarization ratio of the water vapor channel is low (2±0.5%) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Thorben Hendrik Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
EGUsphere, https://doi.org/10.5194/egusphere-2023-1924, https://doi.org/10.5194/egusphere-2023-1924, 2023
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together for the first time. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
EGUsphere, https://doi.org/10.5194/egusphere-2023-1963, https://doi.org/10.5194/egusphere-2023-1963, 2023
Short summary
Short summary
In this study, we use satellite, lidar and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Hassan Bencherif, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Masha Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Ochino, Tomohiro Nagai, Penny Smale, and John Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1946, https://doi.org/10.5194/egusphere-2023-1946, 2023
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study treats on the transport of the biomass burning (BB) products, induced during the 2019–20 extreme extreme Australian bushfire events, over the Southwest Indian Ocean. The BB activity in eastern Africa, weak during the wet season, contributed to modulate the atmospheric composition over this region. The simultaneous presence of African and Australian BB products has been recorded at Reunion. This reveals the complex variability of the atmospheric compostion over the SWIO basin.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
EGUsphere, https://doi.org/10.5194/egusphere-2023-1598, https://doi.org/10.5194/egusphere-2023-1598, 2023
Short summary
Short summary
This paper is a numerical study addressing the problem of observational gaps in atmospheric measurements. We have tested three commonly used techniques, namely the FFT, GLS and HSF. We have found the GLS is a more reliable method for identifying the periodic components of gapped GW time series, particularly when dealing with high-frequency waves. The Haar Structure Function (HSF) is good for producing spectra with negative slopes, the GLS excels for flat spectra and positive slopes.
Andrea Pazmino, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, Kaley A. Walker, and Steve Colwell
EGUsphere, https://doi.org/10.5194/egusphere-2023-788, https://doi.org/10.5194/egusphere-2023-788, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last three decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trend since 2000. The study confirms the ozone recovery in the Antarctic and shows a first quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023, https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Abhinna K. Behera, Emmanuel D. Rivière, Sergey M. Khaykin, Virginie Marécal, Mélanie Ghysels, Jérémie Burgalat, and Gerhard Held
Atmos. Chem. Phys., 22, 881–901, https://doi.org/10.5194/acp-22-881-2022, https://doi.org/10.5194/acp-22-881-2022, 2022
Short summary
Short summary
Deep convection overshooting the stratosphere's contribution to the global stratospheric water budget is still being quantified. We ran three different cloud-resolving simulations of an observed case of overshoots in Bauru during the TRO-Pico balloon campaign in the context of upscaling the impact of overshoots at a large scale. These simulations, which have been validated with balloon-borne and S-band radar measurements, shed light on the local-scale variability and composition of overshoots.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Victor Lannuque, Bastien Sauvage, Brice Barret, Hannah Clark, Gilles Athier, Damien Boulanger, Jean-Pierre Cammas, Jean-Marc Cousin, Alain Fontaine, Eric Le Flochmoën, Philippe Nédélec, Hervé Petetin, Isabelle Pfaffenzeller, Susanne Rohs, Herman G. J. Smit, Pawel Wolff, and Valérie Thouret
Atmos. Chem. Phys., 21, 14535–14555, https://doi.org/10.5194/acp-21-14535-2021, https://doi.org/10.5194/acp-21-14535-2021, 2021
Short summary
Short summary
The African intertropical troposphere is one of the world areas where the increase in ozone mixing ratio has been most pronounced since 1980 and where high carbon monoxide mixing ratios are found in altitude. In this article, IAGOS aircraft measurements, IASI satellite instrument observations, and SOFT-IO model products are used to explore the seasonal distribution variations and the origin of ozone and carbon monoxide over the African upper troposphere.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870, https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary
Short summary
Upward transport within tropical cyclones of water vapor from the low troposphere into the colder upper troposphere/lower stratosphere can result in the moistening of this region. Balloon observations and model simulations of tropical cyclone Enawo in the less-observed Southwest Indian Ocean (the third most tropical cyclone active region on Earth) are used to show how convective overshoots within Enawo penetrate the tropopause directly, injecting water/ice into the stratosphere.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020, https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Short summary
Two common measurements that represent atmospheric aerosol loading are the backscatter and extinction coefficients. Measuring backscatter and extinction coefficients requires different viewing geometries and fundamentally different instrument systems. Further, these coefficients are not directly comparable. We present an algorithm to convert SAGE-observed extinction coefficients to backscatter coefficients for intercomparison with lidar backscatter products, followed by evaluation of the method.
Damien Héron, Stéphanie Evan, Jérôme Brioude, Karen Rosenlof, Françoise Posny, Jean-Marc Metzger, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 8611–8626, https://doi.org/10.5194/acp-20-8611-2020, https://doi.org/10.5194/acp-20-8611-2020, 2020
Short summary
Short summary
Using a statistical method, summer variations (between 2013 and 2016) of ozone and water vapor are characterized in the upper troposphere above Réunion island (21° S, 55° E). It suggests a convective influence between 9 and 13 km. As deep convection is rarely observed near Réunion island, this study provides new insights on the long-range impact of deep convective outflow from the Intertropical Convergence Zone (ITCZ) on the upper troposphere over a subtropical site.
Jean-Loup Bertaux, Alain Hauchecorne, Franck Lefèvre, François-Marie Bréon, Laurent Blanot, Denis Jouglet, Pierre Lafrique, and Pavel Akaev
Atmos. Meas. Tech., 13, 3329–3374, https://doi.org/10.5194/amt-13-3329-2020, https://doi.org/10.5194/amt-13-3329-2020, 2020
Short summary
Short summary
Monitoring of greenhouse gases from space is usually done by measuring the quantity of CO2 and O2 in the atmosphere from their spectral absorption imprinted on the solar spectrum backscattered upwards. We show that the use of the near-infrared band of O2 at 1.27 µm, instead of the O2 band at 0.76 nm used up to now, may be more appropriate to better account for aerosols, in spite of a known airglow emission from ozone. The climate space mission MicroCarb (launched in 2021) includes this new band.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, and Robin Wing
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-254, https://doi.org/10.5194/acp-2020-254, 2020
Preprint withdrawn
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the middle atmosphere temperature bias in ECMWF ERA-5 and ERA-interim reanalyses during 1990–2017. Results show that ERA-interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020, https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary
Short summary
The article presents a powerful atmospheric instrument based on a laser radar (lidar), capable of measuring horizontal wind velocity at a wide range of altitudes. In this study, we evaluate the performance of the wind lidar at Observatoire de Haute-Provence and demonstrate the application of its measurements for studies of atmospheric dynamical processes. Finally, we present an example of early validation of the ESA Aeolus space-borne wind lidar using its ground-based predecessor.
Emily M. McCullough, Robin Wing, and James R. Drummond
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-186, https://doi.org/10.5194/acp-2020-186, 2020
Revised manuscript not accepted
Short summary
Short summary
Very thin (< 10 m) laminations in Arctic mixed phase clouds are detected at Eureka, Nunavut on 52 % of measured days, and 62 % of cloudy measured days during a 3.5-year study by the CANDAC Rayleigh-Mie-Raman lidar (CRL) at the Polar Environment Atmospheric Research Laboratory (PEARL). Precipitating snow reported by Environment and Climate Change Canada is strongly correlated with laminated clouds, and anti-correlated with non-laminated clouds, yielding constraints on precipitation formation.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Silvia Bucci, Sergey Khaykin, Fabrice Jégou, Ghassan Taha, Larry W. Thomason, Brice Barret, Eric Le Flochmoen, Marc von Hobe, Adriana Bossolasco, Nelson Bègue, and Bernard Legras
Atmos. Chem. Phys., 19, 13547–13567, https://doi.org/10.5194/acp-19-13547-2019, https://doi.org/10.5194/acp-19-13547-2019, 2019
Short summary
Short summary
With satellite measurements and transport models, we show that a plume resulting from strong Canadian fires in July/August 2017 was not only distributed throughout the northern/higher latitudes, but also reached the faraway tropics, aided by the circulation of Asian monsoon anticyclone. The regional climate impact in the wider Asian monsoon area in September exceeds the impact of the Asian tropopause aerosol layer by a factor of ~ 3 and compares to that of an advected moderate volcanic eruption.
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Short summary
This study focuses on the hydration patch that was measured during the StratoClim field campaign and the corresponding convective overshoots over the Sichuan Basin. Through analysis using airborne and spaceborne measurements and the numerical simulation using a non-hydrostatic model, we show the key hydration process and pathway of the hydration patch in tropical tropopause layer.
Alain Hauchecorne, Laurent Blanot, Robin Wing, Philippe Keckhut, Sergey Khaykin, Jean-Loup Bertaux, Mustapha Meftah, Chantal Claud, and Viktoria Sofieva
Atmos. Meas. Tech., 12, 749–761, https://doi.org/10.5194/amt-12-749-2019, https://doi.org/10.5194/amt-12-749-2019, 2019
Short summary
Short summary
This paper presents a new dataset of temperature profiles in the upper stratosphere and mesosphere acquired with the GOMOS spectrometer on board the European satellite ENVISAT. The principle is to observe the scattering of sunlight by air molecules at the Earth limb. The observed signal is proportional to the atmospheric density from which the temperature is derived. This technique provides a new source of information on temperature where satellite observations are sparse.
Viktoria F. Sofieva, Francis Dalaudier, Alain Hauchecorne, and Valery Kan
Atmos. Meas. Tech., 12, 585–598, https://doi.org/10.5194/amt-12-585-2019, https://doi.org/10.5194/amt-12-585-2019, 2019
Short summary
Short summary
This paper describes the temperature profiles in the stratosphere obtained from unique stellar scintillation measurements by the GOMOS instrument operated on board Envisat in 2002–2012. The high-resolution temperature profiles (HRTPs) are retrieved with a very good vertical resolution of ~ 200 m and a high accuracy of ~ 1–3 K for altitudes 15–32 km as well as a global coverage. HRTPs can be assimilated into atmospheric models and used in analyses of internal gravity wave activity.
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, and Emily M. McCullough
Atmos. Meas. Tech., 11, 6703–6717, https://doi.org/10.5194/amt-11-6703-2018, https://doi.org/10.5194/amt-11-6703-2018, 2018
Short summary
Short summary
We have compared 2433 nights of OHP lidar temperatures (2002–2018) to temperatures derived from the satellites SABER and MLS. We have found a winter stratopause cold bias in the satellite measurements with respect to the lidar (−6 K for SABER and −17 K for MLS), a summer mesospheric warm bias for SABER (6 K near 60 km), and a vertically structured bias for MLS (−4 to 4 K). We have corrected the satellite data based on the lidar-determined stratopause height and found a significant improvement.
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, Emily M. McCullough, Jean-François Mariscal, and Éric d'Almeida
Atmos. Meas. Tech., 11, 5531–5547, https://doi.org/10.5194/amt-11-5531-2018, https://doi.org/10.5194/amt-11-5531-2018, 2018
Short summary
Short summary
The objective of this work is to minimize the errors at the highest altitudes of a lidar temperature profile which arise due to background estimation and a priori choice. The systematic method in this paper has the effect of cooling the temperatures at the top of a lidar profile by up to 20 K – bringing them into better agreement with satellite temperatures. Following the description of the algorithm is a 20-year cross-validation of two lidars which establishes the stability of the technique.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Andrea Pazmiño, Sophie Godin-Beekmann, Alain Hauchecorne, Chantal Claud, Sergey Khaykin, Florence Goutail, Elian Wolfram, Jacobo Salvador, and Eduardo Quel
Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, https://doi.org/10.5194/acp-18-7557-2018, 2018
Short summary
Short summary
The article mentions several symptoms of recovery. Multilinear regression analysis provides significant increase since 2001 of total ozone in Sept and during the period of maximum ozone destruction (15 Sept–15 Oct). There is significant decrease of ozone mass deficit for the same periods, decrease of relative area of total ozone values lower than 175 DU within the vortex (1 Sept–15 Oct since 2010) and a delay in the occurrence of ozone levels below 125 DU since 2005 for the 1 Sept–15 Oct period.
Bastien Sauvage, Alain Fontaine, Sabine Eckhardt, Antoine Auby, Damien Boulanger, Hervé Petetin, Ronan Paugam, Gilles Athier, Jean-Marc Cousin, Sabine Darras, Philippe Nédélec, Andreas Stohl, Solène Turquety, Jean-Pierre Cammas, and Valérie Thouret
Atmos. Chem. Phys., 17, 15271–15292, https://doi.org/10.5194/acp-17-15271-2017, https://doi.org/10.5194/acp-17-15271-2017, 2017
Short summary
Short summary
We provide the scientific community with a SOFT-IO tool based on the coupling of Lagrangian modeling with emission inventories and aircraft CO measurements, which is able to calculate the contribution of the sources and geographical origins of CO measurements, with good performances. Calculated CO added-value products will help scientists in interpreting large IAGOS CO data set. SOFT-IO could further be applied to other CO data sets or used to help validate emission inventories.
Valentin Duflot, Jean-Luc Baray, Guillaume Payen, Nicolas Marquestaut, Francoise Posny, Jean-Marc Metzger, Bavo Langerock, Corinne Vigouroux, Juliette Hadji-Lazaro, Thierry Portafaix, Martine De Mazière, Pierre-Francois Coheur, Cathy Clerbaux, and Jean-Pierre Cammas
Atmos. Meas. Tech., 10, 3359–3373, https://doi.org/10.5194/amt-10-3359-2017, https://doi.org/10.5194/amt-10-3359-2017, 2017
Rémi Thiéblemont, Marion Marchand, Slimane Bekki, Sébastien Bossay, Franck Lefèvre, Mustapha Meftah, and Alain Hauchecorne
Atmos. Chem. Phys., 17, 9897–9916, https://doi.org/10.5194/acp-17-9897-2017, https://doi.org/10.5194/acp-17-9897-2017, 2017
Pierre Tulet, Andréa Di Muro, Aurélie Colomb, Cyrielle Denjean, Valentin Duflot, Santiago Arellano, Brice Foucart, Jérome Brioude, Karine Sellegri, Aline Peltier, Alessandro Aiuppa, Christelle Barthe, Chatrapatty Bhugwant, Soline Bielli, Patrice Boissier, Guillaume Boudoire, Thierry Bourrianne, Christophe Brunet, Fréderic Burnet, Jean-Pierre Cammas, Franck Gabarrot, Bo Galle, Gaetano Giudice, Christian Guadagno, Fréderic Jeamblu, Philippe Kowalski, Jimmy Leclair de Bellevue, Nicolas Marquestaut, Dominique Mékies, Jean-Marc Metzger, Joris Pianezze, Thierry Portafaix, Jean Sciare, Arnaud Tournigand, and Nicolas Villeneuve
Atmos. Chem. Phys., 17, 5355–5378, https://doi.org/10.5194/acp-17-5355-2017, https://doi.org/10.5194/acp-17-5355-2017, 2017
Short summary
Short summary
The STRAP campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements were conducted at the local (near the vent) and regional scales around the island. The STRAP 2015 campaign gave a unique set of multi-disciplinary data that can now be used by modellers to improve the numerical parameterisations of the physical and chemical evolution of the volcanic plumes.
Hélène Vérèmes, Guillaume Payen, Philippe Keckhut, Valentin Duflot, Jean-Luc Baray, Jean-Pierre Cammas, Jimmy Leclair De Bellevue, Stéphanie Evan, Françoise Posny, Franck Gabarrot, Jean-Marc Metzger, Nicolas Marquestaut, Susanne Meier, Holger Vömel, and Ruud Dirksen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-32, https://doi.org/10.5194/amt-2017-32, 2017
Preprint withdrawn
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Viktoria F. Sofieva, Iolanda Ialongo, Janne Hakkarainen, Erkki Kyrölä, Johanna Tamminen, Marko Laine, Daan Hubert, Alain Hauchecorne, Francis Dalaudier, Jean-Loup Bertaux, Didier Fussen, Laurent Blanot, Gilbert Barrot, and Angelika Dehn
Atmos. Meas. Tech., 10, 231–246, https://doi.org/10.5194/amt-10-231-2017, https://doi.org/10.5194/amt-10-231-2017, 2017
Short summary
Short summary
This paper presents a new ozone profile inversion algorithm for GOMOS/Envisat satellite data. This algorithm is enhanced with a DOAS-type method at visible wavelengths in the upper troposphere and the lower stratosphere. The new GOMOS ozone profiles have a significantly improved data quality in the UTLS compared to the official IPF V6 ozone profiles. The paper describes the inversion algorithm and present inter-comparisons with ozonesonde and satellite measurements.
Sergey M. Khaykin, Jean-Pierre Pommereau, Emmanuel D. Riviere, Gerhard Held, Felix Ploeger, Melanie Ghysels, Nadir Amarouche, Jean-Paul Vernier, Frank G. Wienhold, and Dmitry Ionov
Atmos. Chem. Phys., 16, 12273–12286, https://doi.org/10.5194/acp-16-12273-2016, https://doi.org/10.5194/acp-16-12273-2016, 2016
Short summary
Short summary
The study makes use of a series of field experiments conducted in Brazil and aimed at studying the processes controlling the composition of the tropical lower stratosphere. High-resolution balloon-borne measurements together with global-coverage satellite observations and weather radar acquisitions are analysed using trajectory and transport modelling in order to evaluate the contribution of different transport pathways to the stratospheric water budget.
Mélanie Ghysels, Emmanuel D. Riviere, Sergey Khaykin, Clara Stoeffler, Nadir Amarouche, Jean-Pierre Pommereau, Gerhard Held, and Georges Durry
Atmos. Meas. Tech., 9, 1207–1219, https://doi.org/10.5194/amt-9-1207-2016, https://doi.org/10.5194/amt-9-1207-2016, 2016
Short summary
Short summary
Water vapor in the Earth stratosphere has a significant impact on the climate and the radiative balance. Achieving high-accuracy measurements of humidity in the stratosphere is still far from routine. In this paper, we demonstrate one of the best in situ balloon-borne measurement comparisons from two highly compact spectrometers: Pico-SDLA H2O and FLASH-B.
J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, M. L. Santee, L. Froidevaux, and A. Hauchecorne
Atmos. Chem. Phys., 15, 10385–10397, https://doi.org/10.5194/acp-15-10385-2015, https://doi.org/10.5194/acp-15-10385-2015, 2015
Short summary
Short summary
Our study finds large interannual variability in Antarctic ozone loss in the recent decade, with a number of winters showing shallow ozone holes but also with the year of the largest ozone hole in the last decades. These smaller ozone holes or ozone losses are mainly related to the year-to-year changes in dynamical processes rather than the variations in anthropogenic ozone-depleting substances (ODSs), as the change in ODS levels during the study period was very small.
L. Costantino, P. Heinrich, N. Mzé, and A. Hauchecorne
Ann. Geophys., 33, 1155–1171, https://doi.org/10.5194/angeo-33-1155-2015, https://doi.org/10.5194/angeo-33-1155-2015, 2015
Short summary
Short summary
In this work we perform numerical simulations of convective gravity waves, using the WRF model. We first run an idealized and highly resolved case. Then, we compare realistic simulations (model top at 68km) with lidar measurements of gravity wave potential energy (Ep) over southern France. Vertical structures of simulated potential energy profiles are found to be in good agreement with those measured by lidar. On the other hand, the magnitude of simulated wave energy is clearly underestimated.
D. Dionisi, P. Keckhut, Y. Courcoux, A. Hauchecorne, J. Porteneuve, J. L. Baray, J. Leclair de Bellevue, H. Vérèmes, F. Gabarrot, G. Payen, R. Decoupes, and J. P. Cammas
Atmos. Meas. Tech., 8, 1425–1445, https://doi.org/10.5194/amt-8-1425-2015, https://doi.org/10.5194/amt-8-1425-2015, 2015
D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, and F. G. Wienhold
Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, https://doi.org/10.5194/amt-7-3177-2014, 2014
V. F. Sofieva, J. Tamminen, E. Kyrölä, A. Laeng, T. von Clarmann, F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, G. Barrot, L. Blanot, D. Fussen, and F. Vanhellemont
Atmos. Meas. Tech., 7, 2147–2158, https://doi.org/10.5194/amt-7-2147-2014, https://doi.org/10.5194/amt-7-2147-2014, 2014
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014, https://doi.org/10.5194/acp-14-6195-2014, 2014
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
F. Chane Ming, C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y.-A. Liou, and Y. Kuleshov
Atmos. Chem. Phys., 14, 641–658, https://doi.org/10.5194/acp-14-641-2014, https://doi.org/10.5194/acp-14-641-2014, 2014
R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec
Atmos. Chem. Phys., 13, 12363–12388, https://doi.org/10.5194/acp-13-12363-2013, https://doi.org/10.5194/acp-13-12363-2013, 2013
V. F. Sofieva, N. Rahpoe, J. Tamminen, E. Kyrölä, N. Kalakoski, M. Weber, A. Rozanov, C. von Savigny, A. Laeng, T. von Clarmann, G. Stiller, S. Lossow, D. Degenstein, A. Bourassa, C. Adams, C. Roth, N. Lloyd, P. Bernath, R. J. Hargreaves, J. Urban, D. Murtagh, A. Hauchecorne, F. Dalaudier, M. van Roozendael, N. Kalb, and C. Zehner
Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, https://doi.org/10.5194/essd-5-349-2013, 2013
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
E. G. Larroza, W. M. Nakaema, R. Bourayou, C. Hoareau, E. Landulfo, and P. Keckhut
Atmos. Meas. Tech., 6, 3197–3210, https://doi.org/10.5194/amt-6-3197-2013, https://doi.org/10.5194/amt-6-3197-2013, 2013
C. Tétard, D. Fussen, F. Vanhellemont, C. Bingen, E. Dekemper, N. Mateshvili, D. Pieroux, C. Robert, E. Kyrölä, J. Tamminen, V. Sofieva, A. Hauchecorne, F. Dalaudier, J.-L. Bertaux, O. Fanton d'Andon, G. Barrot, L. Blanot, A. Dehn, and L. Saavedra de Miguel
Atmos. Meas. Tech., 6, 2953–2964, https://doi.org/10.5194/amt-6-2953-2013, https://doi.org/10.5194/amt-6-2953-2013, 2013
J.-L. Baray, Y. Courcoux, P. Keckhut, T. Portafaix, P. Tulet, J.-P. Cammas, A. Hauchecorne, S. Godin Beekmann, M. De Mazière, C. Hermans, F. Desmet, K. Sellegri, A. Colomb, M. Ramonet, J. Sciare, C. Vuillemin, C. Hoareau, D. Dionisi, V. Duflot, H. Vérèmes, J. Porteneuve, F. Gabarrot, T. Gaudo, J.-M. Metzger, G. Payen, J. Leclair de Bellevue, C. Barthe, F. Posny, P. Ricaud, A. Abchiche, and R. Delmas
Atmos. Meas. Tech., 6, 2865–2877, https://doi.org/10.5194/amt-6-2865-2013, https://doi.org/10.5194/amt-6-2865-2013, 2013
P. D. Kalabokas, J.-P. Cammas, V. Thouret, A. Volz-Thomas, D. Boulanger, and C. C. Repapis
Atmos. Chem. Phys., 13, 10339–10352, https://doi.org/10.5194/acp-13-10339-2013, https://doi.org/10.5194/acp-13-10339-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
S. M. Khaykin, J.-P. Pommereau, and A. Hauchecorne
Atmos. Chem. Phys., 13, 6391–6402, https://doi.org/10.5194/acp-13-6391-2013, https://doi.org/10.5194/acp-13-6391-2013, 2013
D. Dionisi, P. Keckhut, C. Hoareau, N. Montoux, and F. Congeduti
Atmos. Meas. Tech., 6, 457–470, https://doi.org/10.5194/amt-6-457-2013, https://doi.org/10.5194/amt-6-457-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
GNSS radio occultation excess-phase processing for climate applications including uncertainty estimation
Impact analysis of processing strategies for long-term GPS zenith tropospheric delay (ZTD)
Irradiance and cloud optical properties from solar photovoltaic systems
Single field-of-view sounder atmospheric product retrieval algorithm: establishing radiometric consistency for hyper-spectral sounder retrievals
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
On the polarimetric backscatter by a still or quasi-still wind turbine
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Broadband radiative quantities for the EarthCARE mission: the ACM-COM and ACM-RT products
Difference spectrum fitting of the ion-neutral collision frequency from dual-frequency EISCAT measurements
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Mispointing correction methods for the conically scanning WIVERN Doppler radar
Radar and Environment-based Hail Damage Estimates using Machine Learning
Efficient collocation of global navigation satellite system radio occultation soundings with passive nadir microwave soundings
Analysis of 2D airglow imager data with respect to dynamics using machine learning
Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations
Joint 1DVar Retrievals of Tropospheric Temperature and Water Vapor from GNSS-RO and Microwave Radiometer Observations
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Observations of anomalous propagation over waters near Sweden
Suppression of precipitation bias on wind velocity from continuous-wave Doppler lidars
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements
An improved near-real-time precipitation retrieval for Brazil
Radio frequency interference detection and mitigation in the DWD C-band weather radar network
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Long-distance propagation of 162 MHz shipping information links associated with sporadic E
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
DeepPrecip: a deep neural network for precipitation retrievals
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hierarchical deconvolution for incoherent scatter radar data
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Jingna Bai, Yidong Lou, Weixing Zhang, Yaozong Zhou, Zhenyi Zhang, Chuang Shi, and Jingnan Liu
Atmos. Meas. Tech., 16, 5249–5259, https://doi.org/10.5194/amt-16-5249-2023, https://doi.org/10.5194/amt-16-5249-2023, 2023
Short summary
Short summary
Homogenized atmospheric water vapor data are an important prerequisite for climate analysis. Compared to other techniques, GPS has an inherent homogeneity advantage but requires reprocessing and homogenization to eliminate impacts of applied strategy and observation environmental changes. The low-elevation cut-off angles are suggested for the best estimates of zenith tropospheric delay (ZTD) reprocessing time series when compared to homogenized radiosonde data or ERA5 reference time series.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Wan Wu, Xu Liu, Liqiao Lei, Xiaozhen Xiong, Qiguang Yang, Qing Yue, Daniel K. Zhou, and Allen M. Larar
Atmos. Meas. Tech., 16, 4807–4832, https://doi.org/10.5194/amt-16-4807-2023, https://doi.org/10.5194/amt-16-4807-2023, 2023
Short summary
Short summary
We present a new operational physical retrieval algorithm that is used to retrieve atmospheric properties for each single field-of-view measurement of hyper-spectral IR sounders. The physical scheme includes a cloud-scattering calculation in its forward-simulation part. The data product generated using this algorithm has an advantage over traditional IR sounder data production algorithms in terms of improved spatial resolution and minimized error due to cloud contamination.
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783, https://doi.org/10.5194/amt-16-4769-2023, https://doi.org/10.5194/amt-16-4769-2023, 2023
Short summary
Short summary
WindRAD (Wind Radar) is the first dual-frequency rotating fan-beam scatterometer in orbit. We observe non-linearity in the backscatter distribution. Therefore, higher-order calibration (HOC) is proposed, which removes the non-linearities per incidence angle. The combination of HOC and NOCant is discussed. It can remove not only the non-linearity but also the anomalous harmonic azimuth dependencies caused by the antenna rotation; hence the optimal winds can be achieved with this combination.
Marco Gabella, Martin Lainer, Daniel Wolfensberger, and Jacopo Grazioli
Atmos. Meas. Tech., 16, 4409–4422, https://doi.org/10.5194/amt-16-4409-2023, https://doi.org/10.5194/amt-16-4409-2023, 2023
Short summary
Short summary
A still wind turbine observed with a fixed-pointing radar antenna has shown distinctive polarimetric signatures: the correlation coefficient between the two orthogonal polarization states was persistently equal to 1. The differential reflectivity and the radar reflectivity factors were also stable in time. Over 2 min (2000 Hz, 128 pulses were used; consequently, the sampling time was 64 ms), the standard deviation of the differential backscattering phase shift was only a few degrees.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
Jason N. S. Cole, Howard W. Barker, Zhipeng Qu, Najda Villefranque, and Mark W. Shephard
Atmos. Meas. Tech., 16, 4271–4288, https://doi.org/10.5194/amt-16-4271-2023, https://doi.org/10.5194/amt-16-4271-2023, 2023
Short summary
Short summary
Measurements from the EarthCARE satellite mission will be used to retrieve profiles of cloud and aerosol properties. These retrievals are combined with auxiliary information about surface properties and atmospheric state, e.g., temperature and water vapor. This information allows computation of 1D and 3D solar and thermal radiative transfer for small domains, which are compared with coincident radiometer observations to continually assess EarthCARE retrievals.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2023-1495, https://doi.org/10.5194/egusphere-2023-1495, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion-neutral collisions is often only possible via certain assumptions. Direct measurement of ion-neutral collision frequencies is possible with multifrequency Incoherent Scatter Radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023, https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Short summary
A data-processing algorithm, RainGRS Clim, has been developed to work on precipitation accumulations such as daily or monthly totals. The algorithm makes the most of additional opportunities: access to high-quality data that are not operationally available and greater efficiency of the algorithms for data quality control and merging for longer accumulations. Monthly accumulations estimated by RainGRS Clim were found to be significantly more reliable than accumulations generated operationally.
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023, https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Short summary
Snow layer melting and melt pond formation on Arctic sea ice are important seasonal processes affecting the surface reflection and energy budget. Sea ice reflectivity was surveyed by airborne imaging spectrometers in May–June 2017. Adapted retrieval approaches were applied to find snow layer liquid water fraction, snow grain effective radius, and melt pond depth. The retrievals show the potential and limitations of spectral airborne imaging to map melting snow layer and melt pond properties.
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023, https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Short summary
This paper provides a new method to retrieve wind profiles from coherent Doppler lidar (CDL) measurements. It takes advantage of layer-to-layer correlation in wind profiles to provide continuous profiles of up to 3 km by filling in the gaps where the CDL signal is too small to retrieve reliable results by itself. Comparison with the current method and collocated radiosonde wind measurements showed excellent agreement with no degradation in results where the current method gives valid results.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-117, https://doi.org/10.5194/amt-2023-117, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The WIVERN mission, one of the four candidates to be the ESA’s Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitating systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to correct the antenna mispointing errors of the WIVERN Doppler radar. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-161, https://doi.org/10.5194/amt-2023-161, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The manuscript addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilises a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regards.
Alex Meredith, Stephen Leroy, Lucy Halperin, and Kerri Cahoy
Atmos. Meas. Tech., 16, 3345–3361, https://doi.org/10.5194/amt-16-3345-2023, https://doi.org/10.5194/amt-16-3345-2023, 2023
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Roberto Cremonini, Tanel Voormansik, Piia Post, and Dmitri Moisseev
Atmos. Meas. Tech., 16, 2943–2956, https://doi.org/10.5194/amt-16-2943-2023, https://doi.org/10.5194/amt-16-2943-2023, 2023
Short summary
Short summary
Extreme rainfall for a specific location is commonly evaluated when designing stormwater management systems. This study investigates the use of quantitative precipitation estimations (QPEs) based on polarimetric weather radar data, without rain gauge corrections, to estimate 1 h rainfall total maxima in Italy and Estonia. We show that dual-polarization weather radar provides reliable QPEs and effective estimations of return periods for extreme rainfall in climatologically homogeneous regions.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2023-85, https://doi.org/10.5194/egusphere-2023-85, 2023
Short summary
Short summary
In this article we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO/MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO/MWR retrieval.
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023, https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023, https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Short summary
The atmosphere can cause radar beams to bend more or less towards the ground. When the atmosphere differs from standard atmospheric conditions, the propagation is considered anomalous. Radars affected by anomalous propagation can observe ground clutter far beyond the radar horizon. Here, 4.5 years' worth of data from five operational Swedish weather radars are presented. Analyses of the data reveal a strong seasonal cycle and weaker diurnal cycle in ground clutter from across nearby waters.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
EGUsphere, https://doi.org/10.5194/egusphere-2023-464, https://doi.org/10.5194/egusphere-2023-464, 2023
Short summary
Short summary
By sampling the spectra of a Doppler lidar faster than the raindrop's beam transit time, the rain signal can be filtered away and the bias on the wind velocity estimation can be reduced. In the method we propose, 3 kHz spectra are normalized with their peak values before retrieving the radial wind velocity. In three hours period, we have observed a significant reduction of the bias of the lidar data relative to the sonic. The tendency is that the more it rains, the more the bias is reduced.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023, https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022, https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022, https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Cited articles
Albertema, S.: Validation of Aeolus satellite wind observations with
aircraft-derived wind data and the ECMWF NWP model for an enhanced
understanding of atmospheric dynamics, Master thesis Utrecht Un., the
Netherlands, https://dspace.library.uu.nl/handle/1874/383392 (last access: 9 February 2022), 2019.
Anderson, P. S., Ladkin, R. S., and Renfrew, I. A.: An autonomous Doppler
sodar wind profiling system, J. Atmos. Ocean. Technol., 22, 1309–1325,
https://doi.org/10.1175/JTECH1779.1, 2005.
Baars, H., Herzog, A., Heese, B., Ohneiser, K., Hanbuch, K., Hofer, J., Yin, Z., Engelmann, R., and Wandinger, U.: Validation of Aeolus wind products above the Atlantic Ocean, Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, 2020.
Baron, A., Chazette, P., Khaykin, S., Payen, G., Marquestaut, N., Bègue, N., and Duflot, V.: Early Evolution of the Hunga-Tonga
Stratospheric Aerosol Plume observed by Lidar at La Réunion
(21∘ S, 55∘ E), ESS Open Archive, 6 September 2022,
https://doi.org/10.1002/essoar.10512319.1, 2022.
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010.
Belova, E., Kirkwood, S., Voelger, P., Chatterjee, S., Satheesan, K., Hagelin, S., Lindskog, M., and Körnich, H.: Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden, Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, 2021.
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler
lidar for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16,
1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989.
Chen, C., Xue, X., Sun, D., Zhao, R., Han, Y., Chen, T., Liu, H., and Zhao,
Y.: Comparison of Lower Stratosphere Wind Observations From the USTC's
Rayleigh Doppler Lidar and the ESA's Satellite Mission Aeolus, Earth
Space Sci., 9, e2021EA002176, https://doi.org/10.1029/2021EA002176, 2022.
de Kloe, J., Stoffelen, A., Tan, D., Andersson, E., Rennie, M., Dabas, A.,
Poli, P., and Huber, D.: ADM-Aeolus Level-2B/2C Processor Input/Output Data
Definitions Interface Control Document, available at: https://earth.esa.int/pi/esa?type=file&table=aotarget&cmd=image&alias=ADM_Aeolus_L2B_Input_Output_DD_ICD (last access: 9 August 2022), 2016.
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014.
ESA: Aeolus CAL/VAL and Science Workshop, 26–29 March 2019, Frascati
(Rome), Italy,
https://nikal.eventsair.com/QuickEventWebsitePortal/aeolus-calval-and-science-workshop-2019/aeolus
(last access: 9 August 2022), 2019.
ESA: Aeolus L1B Data Quality Report WM173, 07-15 December 2021,
https://www.aeolus.esa.int/confluence/pages/viewpage.action?spaceKey=CALVAL&title=Data+Quality+Report+WM173
(last access: 9 August 2022), 2021a.
ESA: Summary of Quality of Aeolus Data Products from 2nd Reprocessing
Campaign covering June 2019 to October 2020,
https://earth.esa.int/eogateway/documents/20142/0/Aeolus-Summary-Reprocessing-2-DISC.pdf
(last access: 23 January 2023), 2021b.
ESA: Welcome to the ESA Aeolus Online Dissemination System, aeolus, ESA [data set], https://aeolus-ds.eo.esa.int/oads/access/, last access: 9 February 2022.
Eyre, J. R., English, S. J., and Forsythe, M.: Assimilation of satellite
data in numerical weather prediction. Part I: The early years, Q. J. Roy.
Meteorol. Soc., 146, 49–68, https://doi.org/10.1002/qj.3654, 2020.
Feofilov, A. G., Chepfer, H., Noël, V., Guzman, R., Gindre, C., Ma, P.-L., and Chiriaco, M.: Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles, Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, 2022.
Forsythe, M.: Atmospheric motion vectors: past, present and future, in: ECMWF
Annual Seminar, 1–79 pp., 2007.
Guo, J., Liu, B., Gong, W., Shi, L., Zhang, Y., Ma, Y., Zhang, J., Chen, T., Bai, K., Stoffelen, A., de Leeuw, G., and Xu, X.: Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China, Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, 2021.
Hauchecorne, A. and Chanin, M.-L.: Density and temperature profiles obtained
by lidar between 35 and 70 km, Geophys. Res. Lett., 7, 565–568,
https://doi.org/10.1029/GL007i008p00565, 1980.
Hauchecorne, A., Chanin, M.-L., and Keckhut, P.: Climatology and trends of
the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar
over the south of France, J. Geophys. Res.-Atmos., 96, 15297,
https://doi.org/10.1029/91JD01213, 1991.
Houchi, K., Stoffelen, A., Marseille, G. J., and De Kloe, J.: Comparison of
wind and wind shear climatologies derived from high-resolution radiosondes
and the ECMWF model, J. Geophys. Res.-Atmos., 115, D22123,
https://doi.org/10.1029/2009JD013196, 2010.
Ingmann, P. and Straume, A. G.: ADM-Aeolus Mission Requirements Document,
https://earth.esa.int/pi/esa?type=file&table=aotarget&cmd=image&alias=Aeolus_MRD (last access: 9
August 2022), 2016.
Iwai, H., Aoki, M., Oshiro, M., and Ishii, S.: Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan, Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021, 2021.
Kanitz, T., Lochard, J., Marshall, J., McGoldrick, P., Lecrenier, O.,
Bravetti, P., Reitebuch, O., Rennie, M., Wernham, D., and Elfving, A.:
Aeolus first light: first glimpse, in: International Conference on Space
Optics – ICSO 2018, 659–664, https://doi.org/10.1117/12.2535982, 2019a.
Kanitz, T., Straume, A. G., Marshall, J., Lecrenier, O., Sachhieri, V.,
Reitebuch, O., Rennie, M., and Wernham, D.: Aeolus – 1 Year After Launch,
in: IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing
Symposium, 28 July–2 August 2019, Yokohama, Japan, 4769–4770,
https://doi.org/10.1109/IGARSS.2019.8898100, 2019b.
Keckhut, P., Courcoux, Y., Baray, J.-L., Porteneuve, J., Vérèmes,
H., Hauchecorne, A., Dionisi, D., Posny, F., Cammas, J.-P., Payen, G.,
Gabarrot, F., Evan, S., Khaykin, S., Rüfenacht, R., Tschanz, B.,
Kämpfer, N. A., Ricaud, P., Abchiche, A., Leclair-de-Bellevue, J., and
Duflot, V.: Introduction to the Maïdo Lidar Calibration Campaign
dedicated to the validation of upper air meteorological parameters, JARS, 9,
094099, https://doi.org/10.1117/1.JRS.9.094099, 2015.
Khaykin S. M., Hauchecorne, A., Cammas, J.-P., Marqestaut, N., Mariscal, J.-F., Posny, F., Payen, G., Porteneuve, J., and Keckhut, P.: Exploring
fine-scale variability of stratospheric wind above the tropical la reunion
island using Rayleigh-Mie Doppler lidar, EPJ Web Conf. Volume 176, The 28th
International Laser Radar Conference (ILRC 28),
https://doi.org/10.1051/epjconf/201817603004, 2018.
Khaykin, S. M., Hauchecorne, A., Wing, R., Keckhut, P., Godin-Beekmann, S., Porteneuve, J., Mariscal, J.-F., and Schmitt, J.: Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations, Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020, 2020.
Khaykin, S., Podglajen, A., Ploeger, F., Grooß, J.-U., Tence, F., Bekki, S., Khlopenkov, K., Bedka, K., Rieger, L., Baron, A., Godin-Beekmann, S., Legras, B., Sellitto, P., Sakai, T., Barnes, J., Uchino, O., Morino, I., Nagai, T., Wing, R., Baumgarten, G., Gerding, M., Duflot, V., Payen, G., Jumelet, J., Querel, R., Liley, B., Bourassa, A., Clouser, B., Feofilov, A., Hauchecorne, A., and Ravetta, F: Global perturbation of
stratospheric water and aerosol burden by Hunga eruption, Commun. Earth
Environ., 3, 316, https://doi.org/10.1038/s43247-022-00652-x, 2022.
Krisch, I. and the Aeolus DISC: Data quality of Aeolus wind measurements,
EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9471, https://doi.org/10.5194/egusphere-egu2020-9471, 2020.
Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D., Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C., and Riese, M.: First tomographic observations of gravity waves by the infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, 2017.
Kumer, V.-M., Reuder, J., and Furevik, B. R.: A Comparison of LiDAR and
Radiosonde Wind Measurements, Energy Proc., 53, 214–220,
https://doi.org/10.1016/j.egypro.2014.07.230, 2014.
Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Grooß, J.-U., Khaykin, S., and Ploeger, F.: The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere, Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, 2022.
Le, M. P.: Micro-disturbances in reaction wheels, PhD thesis, Technische
Universiteit Eindhoven, 166 pp., https://research.tue.nl/en/publications/micro-disturbances-in-reaction-wheels
(last access: 9 August 2022), 2017.
Le Pichon, A., Blanc, E., and Drob, D.: Probing high-altitude winds using
infrasound, J. Geophys. Res.-Atmos., 110, D20104,
https://doi.org/10.1029/2005JD006020, 2005.
Liu, H., Garrett, K., Ide, K., Hoffman, R. N., and Lukens, K. E.: A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System, Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, 2022.
Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell, K.,
Winker, D., and Hu, Y.: Estimating random errors due to shot noise in
backscatter lidar observations, Appl. Opt., 45, 4437–4447,
https://doi.org/10.1364/AO.45.004437, 2006.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Schäfler, A., and Reitebuch, O.: Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus, Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, 2018.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020a.
Lux, O., Wernham, D., Bravetti, P., McGoldrick, P., Lecrenier, O., Riede,
W., D'Ottavi, A., Sanctis, V. de, Schillinger, M., Lochard, J., Marshall,
J., Lemmerz, C., Weiler, F., Mondin, L., Ciapponi, A., Kanitz, T., Elfving,
A., Parrinello, T., and Reitebuch, O.: High-power and frequency-stable
ultraviolet laser performance in space for the wind lidar on Aeolus, Opt.
Lett., 45, 1443–1446, https://doi.org/10.1364/OL.387728,
2020b.
Lux, O., Lemmerz, C., Weiler, F., Kanitz, T., Wernham, D., Rodrigues, G., Hyslop, A., Lecrenier, O., McGoldrick, P., Fabre, F., Bravetti, P., Parrinello, T., and Reitebuch, O.: ALADIN laser frequency stability and its impact on the Aeolus wind error, Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, 2021.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., Schäfler, A., and Reitebuch, O.: Retrieval improvements for the ALADIN Airborne Demonstrator in support of the Aeolus wind product validation, Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, 2022.
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021.
Meteo France: Données publiques, Observations d'altitude (Radio sondages), Meteo France [data set], https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=97&id_rubrique=33, last access: 9 February 2022.
NDACC: Measurement Stations, NDACC [data set], https://ndacc.larc.nasa.gov/, last access: 9 February 2022.
Prudden, S., Fisher, A., Marino, M., Mohamed, A., Watkins, S., and Wild, G.:
Measuring wind with Small Unmanned Aircraft Systems, J. Wind Eng. Ind.
Aerodyn., 176, 197–210, https://doi.org/10.1016/j.jweia.2018.03.029, 2018.
Ratynski, M.: Dataset used for the study of “Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at La Réunion Island and the Observatoire de Haute Provence”, Zenodo [data set], https://doi.org/10.5281/zenodo.7477063, 2022a.
Ratynski, M.: Programs used for the study of “Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at La Réunion Island and the Observatoire de Haute Provence”, Zenodo [code], https://doi.org/10.5281/zenodo.7477104, 2022b.
Reitebuch, O.: Wind Lidar for Atmospheric Research, in: Atmospheric Physics:
Background – Methods – Trends, edited by: Schumann, U., Springer, Berlin,
Heidelberg, 487–507,
https://doi.org/10.1007/978-3-642-30183-4_30, 2012.
Reitebuch, O., Huber, D., and Nikolaus, I.: Algorithm Theoretical Basis
Document ATBD: ADM-Aeolus Level 1B Products, https://earth.esa.int/pi/esa?type=file&table=aotarget&cmd=image&alias=ADM_Aeolus_L1B_Algorithm_TBD (last access: 9 August
2022), 2014.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F.,
Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiß,
A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie,
M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T.,
Straume, A.-G., Fehr, T., von Bismark, J., Floberghagen, R., and Parrinello,
T.: Initial assessment of the performance of the first Wind Lidar in space
on Aeolus, EPJ Web Conf., 237, 01010, https://doi.org/10.1051/epjconf/202023701010, 2020.
Rennie, M. P. and Isaksen, L.: The NWP impact of Aeolus level-2B winds at
ECMWF, ECMWF Technical Memorandum 864, https://doi.org/10.21957/alift7mhr,
2020.
Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T., and
Reitebuch, O.: The impact of Aeolus wind retrievals on ECMWF global weather
forecasts, Q. J. Roy. Meteorol. Soc., 147, 3555–3586,
https://doi.org/10.1002/qj.4142, 2021.
Rennie, M. P., Tan, D., Andersson, E., Poli, P., Dabas, A., De Kloe, J.,
Marseille, G.-J., and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical
Basis Document, ECMWF, https://confluence.ecmwf.int/display/AEOL/L2B+pro (last access: 9 February 2022),
2020.
Rogers, R. R., Ecklund, W. L., Carter, D. A., Gage, K. S., and Ethier, S.
A.: Research Applications of a Boundary-Layer Wind Profiler, B. Am.
Meteorol. Soc., 74, 567–580,
https://doi.org/10.1175/1520-0477(1993)074<0567:RAOABL>2.0.CO;2, 1993.
Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer, Atmos. Meas. Tech., 5, 2647–2659, https://doi.org/10.5194/amt-5-2647-2012, 2012.
Ruppert, D.: Statistics and Data Analysis for Financial Engineering, 1st
edn., Springer Texts in Statistics, Springer, New York, NY, USA,
https://doi.org/10.1007/978-1-4419-7787-8, 2011.
Schillinger, M., Morancais, D., Fabre, F., and Culoma, A. J. F.: ALADIN: the
lidar instrument for the AEOLUS mission, in: Sensors, Systems, and
Next-Generation Satellites VI, 40–51, https://doi.org/10.1117/12.463024,
2003.
She, C. Y., Li, T., Williams, B. P., Yuan, T., and Picard, R. H.: Concurrent
OH imager and sodium temperature/wind lidar observation of a mesopause
region undular bore event over Fort Collins/Platteville, Colorado, J.
Geophys. Res.-Atmos., 109, D22107, https://doi.org/10.1029/2004JD004742, 2004.
Souprayen, C., Garnier, A., Hertzog, A., Hauchecorne, A., and Porteneuve, J.:
Doppler wind lidar for atmospheric measurements. I. Instrumental setup,
validation, and first climatological results, Appl Opt.,
20, 2410–2421, https://doi.org/10.1364/ao.38.002410, 1999.
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen,
L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A.,
Meynart, R., Endemann, M., and Ingmann, P.: The Atmospheric Dynamics Mission
for Global Wind Field Measurement, B. Am. Meteorol. Soc., 86, 73–88,
https://doi.org/10.1175/BAMS-86-1-73, 2005.
Stoffelen, A., Benedetti, A., Borde, R., Dabas, A., Flamant, P., Forsythe,
M., Hardesty, M., Isaksen, L., Källén, E., Körnich, H., Lee, T.,
Reitebuch, O., Rennie, M., Riishøjgaard, L.-P., Schyberg, H., Straume, A.
G., and Vaughan, M.: Wind Profile Satellite Observation Requirements and
Capabilities, B. Am. Meteorol. Soc., 101, E2005–E2021,
https://doi.org/10.1175/BAMS-D-18-0202.1, 2020.
Straume, A. G., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J.,
Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D., Reitebuch,
O., Lemmerz, C., Lux, O., Marksteiner, U., Weiler, F., Witschas, B.,
Meringer, M., Schmidt, K., Nikolaus, I., Geiß, A., Flamant, P., Kanitz,
T., Wernham, D., von Bismarck, J., Bley, S., Fehr, T., Floberghagen, R., and
Parrinello, T.: ESA's space-based Doppler-Rayleighwind lidar mission
Aeolus – First wind and aerosol product assessment results, EPJ Web Conf.,
237, 01007, https://doi.org/10.1051/epjconf/202023701007, 2020.
Sun, B., Reale, A., Seidel, D. J., and Hunt, D. C.: Comparing radiosonde and
COSMIC atmospheric profile data to quantify differences among radiosonde
types and the effects of imperfect collocation on comparison statistics,
J. Geophys. Res.-Atmos., 115, D23104,
https://doi.org/10.1029/2010JD014457, 2010.
Sun, X. J., Zhang, R. W., Marseille, G. J., Stoffelen, A., Donovan, D., Liu, L., and Zhao, J.: The performance of Aeolus in heterogeneous atmospheric conditions using high-resolution radiosonde data, Atmos. Meas. Tech., 7, 2695–2717, https://doi.org/10.5194/amt-7-2695-2014, 2014.
Tan, D. G. H., Rennie, M., Andersson, E., Poli, P., Dabas, A., de Kloe, J.,
Marseille, G.-J., and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical
Basis Document, Tech. Rep., AE-TN-ECMWFL2BP-0023, v. 3.0, 109 pp., https://earth.esa.int/eogateway/missions/aeolus/data (last access: 9
August 2022), 2017.
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021a.
Weiler, F., Rennie, M., Kanitz, T., Isaksen, L., Checa, E., de Kloe, J., Okunde, N., and Reitebuch, O.: Correction of wind bias for the lidar on board Aeolus using telescope temperatures, Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, 2021b.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., Schäfler, A., and Weiler, F.: Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics, Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, 2022.
Wu, S., Sun, K., Dai, G., Wang, X., Liu, X., Liu, B., Song, X., Reitebuch, O., Li, R., Yin, J., and Wang, X.: Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China, Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, 2022.
Xia, H., Dou, X., Sun, D., Shu, Z., Xue, X., Han, Y., Hu, D., Han, Y., and
Cheng, T.: Mid-altitude wind measurements with mobile Rayleigh Doppler lidar
incorporating system-level optical frequency control method, Opt. Express,
20, 15286–15300, https://doi.org/10.1364/OE.20.015286, 2012.
Yan, W. Y., Shaker, A., and El-Ashmawy, N.: Urban land cover classification
using airborne LiDAR data: A review, Remote Sens. Environ., 158,
295–310, https://doi.org/10.1016/j.rse.2014.11.001, 2015.
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This...