Articles | Volume 18, issue 7
https://doi.org/10.5194/amt-18-1591-2025
https://doi.org/10.5194/amt-18-1591-2025
Research article
 | 
03 Apr 2025
Research article |  | 03 Apr 2025

Gravity waves above the northern Atlantic and Europe during streamer events using Aeolus

Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner

Related authors

OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023,https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Analysis of 2D airglow imager data with respect to dynamics using machine learning
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023,https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023,https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021,https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Variability of the Brunt–Väisälä frequency at the OH-airglow layer height at low and midlatitudes
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020,https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of tall-building wakes using a scanning Doppler lidar
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025,https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Mid-Atlantic nocturnal low-level jet characteristics: a machine learning analysis of radar wind profiles
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech., 18, 1269–1282, https://doi.org/10.5194/amt-18-1269-2025,https://doi.org/10.5194/amt-18-1269-2025, 2025
Short summary
Mitigating radome-induced bias in X-band weather radar polarimetric moments using an adaptive discrete Fourier transform algorithm
Padmanabhan Thiruvengadam, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech., 18, 1185–1191, https://doi.org/10.5194/amt-18-1185-2025,https://doi.org/10.5194/amt-18-1185-2025, 2025
Short summary
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary

Cited articles

Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. 
Banyard, T. P., Wright, C. J., Hindley, N. P., Halloran, G., Krisch, I., Kaifler, B., and Hoffmann, L.: Atmospheric gravity waves in Aeolus wind lidar observations, Geophys. Res. Lett., 48, e2021GL092756, https://doi.org/10.1029/2021GL092756, 2021. 
Dhadly, M. S., Englert, C. R., Drob, D. P., Emmert, J. T., Niciejewski, R., and Zawdie, K. A.: Comparison of ICON/MIGHTI and TIMED/TIDI neutral wind measurements in the lower thermosphere, J. Geophys. Res.-Space, 126, e2021JA029904, https://doi.org/10.1029/2021JA029904, 2021. 
Dutta, G., Vinay Kumar, P., and Mohammad, S.: Retrieving characteristics of inertia gravity wave parameters with least uncertainties using the hodograph method, Atmos. Chem. Phys., 17, 14811–14819, https://doi.org/10.5194/acp-17-14811-2017, 2017. 
Eichinger, R., Garny, H., Šácha, P., Danker, J., Dietmüller, S., and Oberländer-Hayn, S.: Effects of missing gravity waves on stratospheric dynamics; part 1: climatology, Clim. Dynam., 54, 3165–3183, https://doi.org/10.1007/s00382-020-05166-w, 2020. 
Download
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Share