Articles | Volume 18, issue 7
https://doi.org/10.5194/amt-18-1689-2025
https://doi.org/10.5194/amt-18-1689-2025
Research article
 | 
16 Apr 2025
Research article |  | 16 Apr 2025

Predictions of failed satellite retrieval of air quality using machine learning

Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman

Related authors

Joint spectral retrievals of ozone with Suomi NPP CrIS augmented by S5P/TROPOMI
Edward Malina, Kevin W. Bowman, Valentin Kantchev, Le Kuai, Thomas P. Kurosu, Kazuyuki Miyazaki, Vijay Natraj, Gregory B. Osterman, Fabiano Oyafuso, and Matthew D. Thill
Atmos. Meas. Tech., 17, 5341–5371, https://doi.org/10.5194/amt-17-5341-2024,https://doi.org/10.5194/amt-17-5341-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Quantitative estimate of several sources of uncertainty in drone-based methane emission measurements
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan J. Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
Atmos. Meas. Tech., 18, 1301–1324, https://doi.org/10.5194/amt-18-1301-2025,https://doi.org/10.5194/amt-18-1301-2025, 2025
Short summary
Implementation and application of an improved phase spectrum determination scheme for Fourier transform spectrometry
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025,https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary
Remote sensing of lower-middle-thermosphere temperatures using the N2 Lyman–Birge–Hopfield (LBH) bands
Richard Eastes, J. Scott Evans, Quan Gan, William McClintock, and Jerry Lumpe
Atmos. Meas. Tech., 18, 921–928, https://doi.org/10.5194/amt-18-921-2025,https://doi.org/10.5194/amt-18-921-2025, 2025
Short summary

Cited articles

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote Sens., 41, 253–263, https://doi.org/10.1109/TGRS.2002.808356, 2003. a, b
Bowman, K. W., Steck, T., Worden, H. M., Worden, J., Clough, S., and Rodgers, C.: Capturing time and vertical variability of tropospheric ozone: A study using TES nadir retrievals, J. Geophys. Res.-Atmos., 107, ACH21–1–ACH21–11, https://doi.org/10.1029/2002JD002150, 2002. a
Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E., Osterman, G., Steck, T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P., Rinsland, C., Gunson, M., and Beer, R.: Tropospheric Emission Spectrometer: Retrieval method and error analysis, IEEE T. Geosci. Remote Sens., 44, 1297–1306, https://doi.org/10.1109/TGRS.2006.871234, 2006. a
Brence, J.: brencej/RetrievalFailure: v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.15189518, 2025. a
Brence, J., Tanevski, J., Adams, J., Malina, E., and Džeroski, S.: Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations, Mach. Learn., 112, 1337–1363, https://doi.org/10.1007/s10994-022-06155-2, 2023. a
Download
Short summary
The large fleet of Earth observation satellites in orbit currently generate huge volumes of data, requiring significant computational resources to process these data in a timely manner. We present a method for predicting poor-quality measurements using machine learning. We find that machine learning methods can accurately predict poor-quality measurements and remove them from the processing chain, saving time and computational resources. 
Share