Articles | Volume 5, issue 12
Atmos. Meas. Tech., 5, 3055–3067, 2012
https://doi.org/10.5194/amt-5-3055-2012
Atmos. Meas. Tech., 5, 3055–3067, 2012
https://doi.org/10.5194/amt-5-3055-2012
Research article
12 Dec 2012
Research article | 12 Dec 2012

Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

L. Zhu et al.

Related authors

Size-resolved dust direct radiative effect efficiency derived from satellite observations
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022,https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021,https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data
Z. Zhang, K. Meyer, S. Platnick, L. Oreopoulos, D. Lee, and H. Yu
Atmos. Meas. Tech., 7, 1777–1789, https://doi.org/10.5194/amt-7-1777-2014,https://doi.org/10.5194/amt-7-1777-2014, 2014
Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect
A. Arola, T. F. Eck, J. Huttunen, K. E. J. Lehtinen, A. V. Lindfors, G. Myhre, A. Smirnov, S. N. Tripathi, and H. Yu
Atmos. Chem. Phys., 13, 7895–7901, https://doi.org/10.5194/acp-13-7895-2013,https://doi.org/10.5194/acp-13-7895-2013, 2013
Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study
P. Stier, N. A. J. Schutgens, N. Bellouin, H. Bian, O. Boucher, M. Chin, S. Ghan, N. Huneeus, S. Kinne, G. Lin, X. Ma, G. Myhre, J. E. Penner, C. A. Randles, B. Samset, M. Schulz, T. Takemura, F. Yu, H. Yu, and C. Zhou
Atmos. Chem. Phys., 13, 3245–3270, https://doi.org/10.5194/acp-13-3245-2013,https://doi.org/10.5194/acp-13-3245-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022,https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022,https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022,https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022,https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022,https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary

Cited articles

Arai, E., Pereira, G., Coura, S. M. C., Cardozo, F. S., Silva, F. B., Shimabukuro, Y. E., Moraes, E. C., Freitsa, R. M., and Espirito-Santo, F. D. B.: Spectral signature of leaves of Amazon rainforest tree species, IGARSS, 2011 IEEE International, 4788–4791, 2010.
Asner, G. P., Wessman, C. A., Bateson, C. A., and Privette, J. L.: Impact of tissue, canopy, and landscape factors on the hyperspectral reflectance variability of arid ecosystems, Remote Sens. Environ., 74, 69–84, 2000.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, 2000.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Gregoire, J. M.: Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77, 22–33, 2001.
Cess, R. D.: Biosphere-albedo feedback and climate modeling, J. Atmos. Sci., 35, 1765–1767, 1978.
Download