Articles | Volume 8, issue 1
https://doi.org/10.5194/amt-8-435-2015
https://doi.org/10.5194/amt-8-435-2015
Research article
 | 
27 Jan 2015
Research article |  | 27 Jan 2015

Distinguishing cirrus cloud presence in autonomous lidar measurements

J. R. Campbell, M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton

Related authors

Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022,https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022,https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021,https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021,https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary

Cited articles

Cadet, B., Goldfarb, L., Faduilhe, D., Baldy, S., Giraud, V., Keckhut, P., and Réchou, A.: A sub-tropical cirrus clouds climatology from Reunion Island (21_S, 55_E) lidar data set, Geophys. Res. Lett., 30, 1130, https://doi.org/10.1029/2002GL016342, 2003.
Campbell, J. R. and Sassen, K.: Polar Regions stratospheric clouds at the South Pole from 5 years of continuous lidar data: macrophysical, optical, and thermodynamic properties, J. Geophys. Res., 113, D20204, https://doi.org/10.1029/2007JD009680, 2008.
Campbell, J. R. and Shiobara, M.: Glaciation of a mixed-phase boundary layer cloud at a coastal Arctic site as depicted in continuous lidar measurements, Polar Sci., 2, https://doi.org/10.1016/j.polar.2008.04.004, 2008.
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement program sites: Instruments and data processing, J. Atmos. Oceanic. Technol., 32, 439–452, 2002.
Chew, B. N., Campbell, J. R., Reid, J. S., Giles, D. M., Welton, E. J., Salinas, S. V., and Liew, S. C.: Tropical cirrus cloud contamination in sun photometer data, Atmos. Environ., 45, 6724–6731, https://doi.org/10.1016/j.atmosenv.2011.08.017, 2011.
Download
Short summary
Digital thresholds based on 2012 CALIOP satellite lidar measurements are investigated for distinguishing cirrus cloud presence, including cloud top temperatures and heights combined with layer depolarization and phase and optical depths. A cloud top temperature of -37 C is found to exhibit the most stable performance, owing to it being the point of homogeneous liquid-water freezing. Depolarization and phase help but are mostly ambiguous at warmer temperatures where mixed-phase clouds propagate.