Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1587-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-1587-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP
Benjamin Marchant
CORRESPONDING AUTHOR
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
USRA Universities Space Research Association, Columbia, Maryland, USA
Steven Platnick
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Kerry Meyer
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
USRA Universities Space Research Association, Columbia, Maryland, USA
G. Thomas Arnold
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
SSAI, Inc., 10210 Greenbelt Road, Lanham, MD 20706, USA
Jérôme Riedi
LOA (Laboratoire d'Optique Atmospherique), Université Lille 1, France
Related authors
No articles found.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024, https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Short summary
The shapes of clouds viewed from space reflect vertical and horizontal motions in the atmosphere. We theorize that, globally, cloud perimeter complexity is related to the dimension of turbulence also governed by horizontal and vertical motions. We find agreement between theory and observations from various satellites and a numerical model and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Souichiro Hioki, Jérôme Riedi, and Mohamed S. Djellali
Atmos. Meas. Tech., 14, 1801–1816, https://doi.org/10.5194/amt-14-1801-2021, https://doi.org/10.5194/amt-14-1801-2021, 2021
Short summary
Short summary
This research estimates the magnitude of a motion-induced error in the measurement of polarimetric state of light by a planned instrument on a future satellite. We discovered that the motion-induced error can not be cancelled out by spatiotemporal averaging, but it can be predicted from the along-track change of the intensity of light. With the estimated statistics and the simulation model, this research paves a way to provide pixel-level quality information in the future satellite products.
Cited articles
Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), ATBD reference number ATBDMpaych-OD-06, 129 pp., 2010.
Baum, B. A., Soulen, P. F., Strabala, K. I., King, M. D., Ackerman, S. A., Menzel, W. P., and Yang, P.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 2, Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, 2000.
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud top property refinements for Collection 6, J. Appl. Meteorol. Climatol., 51, 1145–1163, 2012.
Chahine, M. T.: The hydrological cycle and its influence on climate, Nature, 359, 373–379, 1992.
Gao, B.-C., Goetz, A. F., and Wiscombe, W. J.: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 µm water vapor band, Geophys. Res. Lett., 20, 301–304, 1993.
Gao, B.-C., Goetz, A. F. H., Westwater, E. D. R., Conel J. E., and Green, R. O.: Possible Near-IR Channels for Remote Sensing Precipitable Water Vapor from Geostationary Satellite Platforms, J. Appl. Meteorol., 32, 1791–1801, 1993.
Goloub, P., Herman, M., Chepfer, H., Riedi, J., Brogniez, G., Couvert, P., and Seze, G.: Cloud thermodynamical phase classification from the POLDER spaceborne instrument, 39, 105, 14747–14759, 2000.
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., and Wang, C.: Resolving cirrus optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys. Discuss., 15, 29455–29495, 2015.
Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner, D., Yang, P., Nasiri, S. L., Baum, B., Sun, W., Liu, Z., Wang, Z., Young, S., Stamnes, K., Huang, J., Kuehn, R., and Holz, R.: Calipso/caliop cloud phase discrimination algorithm, J. Atmos. Ocean. Technol., 26, 2293–2309, 2009.
Jin, H. and Nasiri, S. L.: Evaluation of AIRS Cloud-Thermodynamic-Phase Determination with CALISO, J. Appl. Meteorol. Climatol., 53, 1012-1027, 2014.
Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., and Roy, D. P.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research, IEEE Trans. Geosci. Remote Sens., 36, 1228–1249, 1998.
Key, J. R. and Intrieri, J. M.: Cloud Particle Phase Determination with the AVHRR, Notes and Correspondence, 1797–1804, 2000.
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanreì, D., Gao, B. C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442–458, 2003.
King, M. D., Platnick, S., Hubanks, P. A., Arnold, G. A., Moody, E. G., Wind, G., and Wind, B.: Collection 005 Change Summary for the MODIS Cloud Optical Properties (06-OD) Algorithm, 2006.
Kou, L., Labrie, D., and Chylek, P.: Refractive indices of water and ice in the 0.65- to 2.5-µ m spectral range, Appl. Opt., 32, 3531–3540, 1993.
Liou, K. N.: Influence of cirrus clouds on weather and climate processes: A global perspective, Mon. Weather Rev., 114, 1167–1199, 1986.
Menzel, W. P., Frey Richard, A., and Baum, B. A.: Cloud top properties and cloud phase algorithm theoretical basis document, 2010.
Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S., and Hofmann, R. J. P.: Reconciling simulated and observed views of clodus: MODIS, ISCCP, and the limits of instrument simulators, J. Climate, 25, 4699–4720, https://doi.org/10.1175/JCLI-D-11-00267.1, 2012.
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedi, J. C., and Frey, R. A.: The MODIS cloud products: algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41, 459–473, 2003.
Platnick, S., King, M. D., Meyer, K. G., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Ridgway, B., and Riedi, J.: MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets, http://modis-atmos.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf, 2014.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., and Ahmad, E.: Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment, Research Articles, 243, 57–63, 1989.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Riedi, J., Marchant, B., Platnick, S., Baum, B. A., Thieuleux, F., Oudard, C., Parol, F., Nicolas, J.-M., and Dubuisson, P.: Cloud thermodynamic phase inferred from merged POLDER and MODIS data, Atmos. Chem. Phys., 10, 11851–11865, https://doi.org/10.5194/acp-10-11851-2010, 2010.
Wielicki, B. A., Cess, R. D., King, M. D., Randall, D. A., and Harrison, E. F.: Mission to planet earth: role of clouds and radiation in climate, Bull. Am. Meteor. Soc., 76, 2125–2153, 1995.
Winker, D. M., Vaughan, M. A., Omar, A. H., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission 85 and CALIOP data processing algorithms, J. Atmos. Ocean. Technol., 26, 2310–2323, 2009.
Yang, P., Bi, L., Baum, B. A., Liou, K. N., Kattawar, G. W., Mishchenko, M. I., and Cole, B.: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm, J. Atmos. Sci., 70, 330–347, 2013.
Zhang, Z. and Platnick, S.: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands, J. Geophys. Res., 116, D20215, https://doi.org/10.148-0227/11/2011JD016216, 2011.
Short summary
The current paper presents the new MODIS Collection 6 (C6) cloud thermodynamic phase classification algorithm. To evaluate the performance of the C6 cloud phase algorithm, extensive granule-level and global comparisons have been conducted against the heritage C5 algorithm and CALIOP. A wholesale improvement is seen for C6 compared to C5.
The current paper presents the new MODIS Collection 6 (C6) cloud thermodynamic phase...