Articles | Volume 9, issue 8
Atmos. Meas. Tech., 9, 4079–4101, 2016
https://doi.org/10.5194/amt-9-4079-2016

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Meas. Tech., 9, 4079–4101, 2016
https://doi.org/10.5194/amt-9-4079-2016

Research article 25 Aug 2016

Research article | 25 Aug 2016

Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 3: Temperature uncertainty budget

Thierry Leblanc et al.

Related authors

Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Nadia Smith, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-412,https://doi.org/10.5194/amt-2021-412, 2021
Preprint under review for AMT
Short summary
Ozone profile retrieval from nadir TROPOMI measurements in the UV range
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021,https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
The impact of Los Angeles Basin pollution and stratospheric intrusions on the surrounding San Gabriel Mountains as seen by surface measurements, lidar, and numerical models
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021,https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021,https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Evaluation of UV aerosol retrievals from an ozone lidar
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020,https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
Xingou Xu and Ad Stoffelen
Atmos. Meas. Tech., 14, 7435–7451, https://doi.org/10.5194/amt-14-7435-2021,https://doi.org/10.5194/amt-14-7435-2021, 2021
Short summary
Evaluation of convective boundary layer height estimates using radars operating at different frequency bands
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021,https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021,https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021,https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary

Cited articles

Ahmad, Z., McClain, C. R., Herman, J. R., Franz, B. A., Kwiatkowska, E. J., Robinson, W. D., Bucsela, E. J., and Tzortziou, M.: Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements, Appl. Opt., 46, 6504–6512, 2007.
Argall, P. S.: Upper altitude limit for Rayleigh lidar, Ann. Geophys., 25, 19–25, https://doi.org/10.5194/angeo-25-19-2007, 2007.
Arshinov, Y. F., Bobrovnikov, S. M., Zuev, V. E., and Mitev, V. M.: Atmospheric-temperature measurements using a pure rotational Raman lidar, Appl. Opt., 22, 2984–2990, 1983.
Bates, D. R.: Rayleigh-scattering by air, Planet Space Sci., 32, 785–790, https://doi.org/10.1016/0032-0633(84)90102-8, 1984.
Bauer, R., Rozanov, A., McLinden, C. A., Gordley, L. L., Lotz, W., Russell III, J. M., Walker, K. A., Zawodny, J. M., Ladstätter-Weißenmayer, A., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements, Atmos. Meas. Tech., 5, 1059–1084, https://doi.org/10.5194/amt-5-1059-2012, 2012.
Short summary
This article prescribes a standardized approach for the treatment of uncertainty in the backscatter temperature lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of middle atmospheric science applications (e.g., climatology, long-term trends, mesospheric tides, satellite validation).