Articles | Volume 10, issue 5
https://doi.org/10.5194/amt-10-1859-2017
https://doi.org/10.5194/amt-10-1859-2017
Research article
 | 
24 May 2017
Research article |  | 24 May 2017

Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data

Sanggyun Lee, Hyangsun Han, Jungho Im, Eunna Jang, and Myong-In Lee

Related authors

Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Sanggyun Lee, Hyun-cheol Kim, and Jungho Im
The Cryosphere, 12, 1665–1679, https://doi.org/10.5194/tc-12-1665-2018,https://doi.org/10.5194/tc-12-1665-2018, 2018
Short summary
Intercomparison of Terrestrial Carbon Fluxes and Carbon Use Efficiency Simulated by CMIP5 Earth System Models
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536,https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary

Cited articles

Amorati, R., Alberoni, P. P., Levizzani, V., and Nanni, S.: IR-based satellite and radar rainfall estimates of convective storms over northern Italy, Meteorol. Appl., 7, 1–18, https://doi.org/10.1017/S1350482700001328, 2000.
Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives, Weather Forecast., 20, 351–366, https://doi.org/10.1175/WAF858.1, 2005.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9; Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001.
Craven, J. P., Jewell, R. E., and Brooks, H. E.: Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels, Weather Forecast., 17, 885–890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2, 2002.
Download
Short summary
Deterministic and probabilistic CI detection models based on decision trees (DT), random forest (RF), and logistic regression (LR) were developed using Himawari-8 AHI data obtained over the Korean Peninsula. We used a total of 12 interest fields including time trends to develop the models. We identified contributing variables for CI detection. DT showed a higher hit rate, while RF produced a higher critical success index. The mean lead times by the four models were in the range of 20–40 min.