Articles | Volume 10, issue 5
https://doi.org/10.5194/amt-10-1859-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-10-1859-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data
Sanggyun Lee
School of Urban and Environmental Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan, 44949, South Korea
Hyangsun Han
Unit of Arctic Sea-Ice prediction, Korea Polar Research Institute,
Incheon, 21990, South Korea
School of Urban and Environmental Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan, 44949, South Korea
Eunna Jang
School of Urban and Environmental Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan, 44949, South Korea
Myong-In Lee
School of Urban and Environmental Engineering, Ulsan National
Institute of Science and Technology (UNIST), Ulsan, 44949, South Korea
Related authors
Sanggyun Lee, Hyun-cheol Kim, and Jungho Im
The Cryosphere, 12, 1665–1679, https://doi.org/10.5194/tc-12-1665-2018, https://doi.org/10.5194/tc-12-1665-2018, 2018
Short summary
Short summary
Arctic sea ice leads play a major role in exchanging heat and momentum between the Arctic atmosphere and ocean. In this study, we propose a novel lead
detection approach based on waveform mixture analysis. The performance of the proposed approach in detecting leads was promising when compared to the
existing methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters, as it directly uses L1B waveform data.
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536, https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary
Short summary
This study compares historical simulations of the terrestrial carbon cycle produced by 10 ESMs that participated in the CMIP5. The models show noticeable deficiencies compared to the MODIS data and large differences among the simulations, although the MME mean provides a realistic global mean value and spatial distributions. MME is reflected by the systematic biases of simulated biogeochemical processes which depends on temperature conditions strongly in every plant functional types.
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024, https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.
Daehyeon Han, Jungho Im, Yeji Shin, and Juhyun Lee
Geosci. Model Dev., 16, 5895–5914, https://doi.org/10.5194/gmd-16-5895-2023, https://doi.org/10.5194/gmd-16-5895-2023, 2023
Short summary
Short summary
To identify the key factors affecting quantitative precipitation nowcasting (QPN) using deep learning (DL), we carried out a comprehensive evaluation and analysis. We compared four key factors: DL model, length of the input sequence, loss function, and ensemble approach. Generally, U-Net outperformed ConvLSTM. Loss function and ensemble showed potential for improving performance when they synergized well. The length of the input sequence did not significantly affect the results.
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020, https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.
Nakbin Choi, Kyu-Myong Kim, Young-Kwon Lim, and Myong-In Lee
The Cryosphere, 13, 3007–3021, https://doi.org/10.5194/tc-13-3007-2019, https://doi.org/10.5194/tc-13-3007-2019, 2019
Short summary
Short summary
This study compares the decadal changes of the leading patterns of sea level pressure between the early (1982–1997) and the recent (1998–2017) periods as well as their influences on the Arctic sea ice extent (SIE) variability. The correlation between the Arctic Dipole (AD) mode and SIE becomes significant in the recent period, not in the past, due to its spatial pattern change. This tends to enhance meridional wind over the Fram Strait and sea ice discharge to the Atlantic.
Seohui Park, Minso Shin, Jungho Im, Chang-Keun Song, Myungje Choi, Jhoon Kim, Seungun Lee, Rokjin Park, Jiyoung Kim, Dong-Won Lee, and Sang-Kyun Kim
Atmos. Chem. Phys., 19, 1097–1113, https://doi.org/10.5194/acp-19-1097-2019, https://doi.org/10.5194/acp-19-1097-2019, 2019
Short summary
Short summary
This study proposed machine-learning-based models to estimate ground-level particulate matter concentrations using satellite observations and numerical model-derived data. Aerosol optical depth was identified as the most significant for estimating ground-level PM concentrations, followed by wind speed and solar radiation. The results show that the proposed models produced better performance than the existing approaches, particularly in improving on the biases of the process-based models.
Sanggyun Lee, Hyun-cheol Kim, and Jungho Im
The Cryosphere, 12, 1665–1679, https://doi.org/10.5194/tc-12-1665-2018, https://doi.org/10.5194/tc-12-1665-2018, 2018
Short summary
Short summary
Arctic sea ice leads play a major role in exchanging heat and momentum between the Arctic atmosphere and ocean. In this study, we propose a novel lead
detection approach based on waveform mixture analysis. The performance of the proposed approach in detecting leads was promising when compared to the
existing methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters, as it directly uses L1B waveform data.
Dongmin Kim, Myong-In Lee, and Eunkyo Seo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-549, https://doi.org/10.5194/bg-2016-549, 2017
Preprint retracted
Short summary
Short summary
This study investigates the impacts of temperature sensitivity of soil respiration (Q10) on the terrestrial carbon cycle using CLM4 off-line simulation. This study develops a new parameterization for determining Q10 by considering the soil respiration dependence on soil temperature and moisture obtained by multiple regression. The results show that distribution of heterogenous Q10 induces to overcome the soil respiration and GPP distribution comparing with original Q10 parameterization.
Dongmin Kim, Myong-In Lee, Su-Jong Jeong, Jungho Im, Dong Hyun Cha, and Sanggyun Lee
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-536, https://doi.org/10.5194/bg-2016-536, 2016
Manuscript not accepted for further review
Short summary
Short summary
This study compares historical simulations of the terrestrial carbon cycle produced by 10 ESMs that participated in the CMIP5. The models show noticeable deficiencies compared to the MODIS data and large differences among the simulations, although the MME mean provides a realistic global mean value and spatial distributions. MME is reflected by the systematic biases of simulated biogeochemical processes which depends on temperature conditions strongly in every plant functional types.
H. M. Park, M. A. Kim, and J. Im
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 325–327, https://doi.org/10.5194/isprs-archives-XLI-B7-325-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-325-2016, 2016
S. Park and J. Im
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 703–704, https://doi.org/10.5194/isprs-archives-XLI-B7-703-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-703-2016, 2016
J.-M. Yoo, M.-J. Jeong, D. Kim, W. R. Stockwell, J.-H. Yang, H.-W. Shin, M.-I. Lee, C.-K. Song, and S.-D. Lee
Atmos. Chem. Phys., 15, 10857–10885, https://doi.org/10.5194/acp-15-10857-2015, https://doi.org/10.5194/acp-15-10857-2015, 2015
Short summary
Short summary
Major air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with long-term records from a dense observation network over Korea were extensively analyzed with land-use types, classified by Korean government, consistent with satellite-observed land covers. The weekly cycles of the pollutant showed different behaviors with the types. Regardless of land-use types, ozone has an increasing trend, while the other pollutants have decreasing trends. Most areas in Korea were VOCs-limited for ozone chemistry.
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Synergy of millimeter-wave radar and radiometer measurements for retrieving frozen hydrometeors in deep convective systems
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Improved Simulation of Thunderstorm Characteristics and Polarimetric Signatures with LIMA 2-Moment Microphysics in AROME
Harmonized Cloud Datasets for OMI and TROPOMI Using the O2‐O2 477 nm Absorption Band
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Extension of AVHRR-based climate data records: Exploring ways to simulate AVHRR radiances from Suomi-NPP VIIRS data
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Assessment of horizontally-oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Riming-dependent Snowfall Rate and Ice Water Content Retrievals for W-band cloud radar
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Radiative Closure Assessment of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025, https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar–radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study shows how small threshold changes significantly affect the climatology of severe storms.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025, https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests based on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observation experiments.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025, https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Short summary
CO2 column-averaged dry-air mole fractions can be retrieved from space using spectrometers like OCO-2. However, nearby clouds induce spectral distortions that bias these retrievals beyond the accuracy needed for global CO2 source and sink assessments. This study employs a physics-based linearization approach to represent 3D cloud effects and introduces radiance-level mitigation techniques for actual OCO-2 data, enabling the operational implementation of these corrections.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025, https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Short summary
This paper presents our latest development in tomographic reconstruction algorithms that use multi-angle (sub)millimeter-wave brightness temperature to reconstruct the spatial distribution of ice clouds. Compared to nadir-only retrievals, the tomography technique provides a detailed reconstruction of ice clouds’ inner structure with high spatial resolution and significantly improves retrieval accuracy. Also, the technique effectively increases detection sensitivity for small ice cloud particles.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Keiichi Ohara and Hirohiko Masunaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-173, https://doi.org/10.5194/egusphere-2025-173, 2025
Short summary
Short summary
Ice particles (e.g., cloud ice, snow and graupel) in convective clouds play key roles in cloud and precipitation formation. This study combines satellite millimeter-wave radar and radiometer observations to estimate the vertical distributions of physical parameters of ice particles such as mass, size, and number densities. CPR radar and GPM radiometer observations together reduce the estimation errors of the physical parameters and provide information on the optimal ice particle shape.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025, https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Short summary
The dynamics of thunderclouds are studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Cloé David, Clotilde Augros, Benoît Vié, François Bouttier, and Tony Le Bastard
EGUsphere, https://doi.org/10.5194/egusphere-2025-685, https://doi.org/10.5194/egusphere-2025-685, 2025
Short summary
Short summary
Simulations of storm characteristics and associated radar signatures were improved, especially under the freezing level, using an advanced cloud scheme. Discrepancies between observations and forecasts at and above the melting layer highlighted issues in both the radar forward operator and the microphysics. To overcome part of these issues, different parametrizations of the operator were suggested. This work aligns with the future integration of polarimetric data into assimilation systems.
Huan Yu, Isabelle De Smedt, Nicolas Theys, Maarten Sneep, Pepijn Veefkind, and Michel Van Roozendael
EGUsphere, https://doi.org/10.5194/egusphere-2025-478, https://doi.org/10.5194/egusphere-2025-478, 2025
Short summary
Short summary
We introduce a new cloud retrieval algorithm using the O2-O2 absorption band at 477 nm to generate harmonized cloud datasets from OMI and TROPOMI. The algorithm improves upon the OMI O2-O2 operational cloud algorithm in several aspects. The new approach improves consistency in cloud parameters and NO2 retrievals between two sensors.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025, https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Short summary
In satellite remote sensing, estimating cloud-base height (CBH) is more challenging than estimating cloud-top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI on JAXA’s GCOM-C satellite to estimate CBHs together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
EGUsphere, https://doi.org/10.5194/egusphere-2025-379, https://doi.org/10.5194/egusphere-2025-379, 2025
Short summary
Short summary
The topic is finding methods to extend climate data records from single-instrument satellite observations, in this case the Advanced Very High Resolution Radiometer (AVHRR). Several modern instruments include AVHRR-heritage channels but some corrections are necessary to account for some differences. We have simulated AVHRR data from the VIIIRS sensor on NOAA polar satellites. We find that methods based on machine learning are capable of performing these corrections.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3841, https://doi.org/10.5194/egusphere-2024-3841, 2025
Short summary
Short summary
This study introduces a novel method to detect horizontally oriented ice crystals (HOICs) using two ground-based polarization lidars at different zenith angles, based on a year-long dataset collected in Beijing. Combined with cloud radar and reanalysis data, the fine categorization results reveal HOICs occur in calm winds and moderately cold temperatures and are influenced by turbulence near cloud bases. The results enhance our understanding of cloud processes and improve the atmospheric model.
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3664, https://doi.org/10.5194/egusphere-2024-3664, 2025
Short summary
Short summary
Contrails, the linear clouds formed by aircraft, are have a substantial climate impact. Flight deviations to avoid forming contrails should decrease this impact. We introduce a method for matching contrails seen by satellites to the flights that made them. This can determine if avoidance was successful and improve contrail forecasts. We also introduce a synthetic contrail dataset to evaluate the accuracy of the matches. We show that our attributions are much more accurate than previous methods.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3916, https://doi.org/10.5194/egusphere-2024-3916, 2025
Short summary
Short summary
Accurate measurements of cloud water content IWC and snowfall rate SR are challenging due to high spatial variability and limitations of our measurement techniques. Here we present a novel method to derive IWC and SR from W-band cloud radar observations, considering the degree of riming. We also investigate the use of the liquid water path as a proxy for the occurrence of riming, which is easier to measure, so that the method can be applied to both ground-based and space-based instruments.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024, https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1651, https://doi.org/10.5194/egusphere-2024-1651, 2024
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared and the likelihood of them differing by 10 W/m2 defines the closure.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Cited articles
Amorati, R., Alberoni, P. P., Levizzani, V., and Nanni, S.: IR-based satellite and radar rainfall estimates of convective storms over northern Italy, Meteorol. Appl., 7, 1–18, https://doi.org/10.1017/S1350482700001328, 2000.
Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives, Weather Forecast., 20, 351–366, https://doi.org/10.1175/WAF858.1, 2005.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9; Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001.
Craven, J. P., Jewell, R. E., and Brooks, H. E.: Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels, Weather Forecast., 17, 885–890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2, 2002.
Guo, Z. and Du, S.: Mining parameter information for building extraction and change detection with very high resolution imagery and GIS data, GIS. Remote Sens., 54, 38–63, 2017.
Haile, A. T., Rientjes, T., Gieske, A., and Gebremichael, M.: Multispectral remote sensing for rainfall detection and estimation at the source of the Blue Nile River, Int. J. Appl. Earth Obs. Geoinf., S76–S82, 2010.
Han, H., Lee, S., Im, J., Kim, M., Lee, M. I., Ahn, M. H., and Chung, S. R.: Detection of convective initiation using Meteorological Imager onboard Communication, Ocean, and Meteorological satellite based on machine learning approaches, Remote Sens., 7, 9184–9204, 2015.
Hane, C. E., Rabin, R. M., Crawford, T. M., Bluestein, H. B., and Baldwin, M. E.: A Case Study of Severe Storm Development along a Dryline within a Synoptically Active Environment, Part II: Multiple Boundaries and Convective Initiation, Mon. Weather Rev., 130, 900–920, https://doi.org/10.1175/1520-0493(2002)130<0900:ACSOSS>2.0.CO;2, 2002.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regressio, John Wiley and Sons, Inc., New York, 528 pp., 2000.
Houze, R. A.: Mesoscale convective systems, Rev. Geophys., 42, RG4003, 10.1029/2004RG000150, 2004.
Im, J., Jensen, J. R., and Tullis, J. A.: Object-based change detection using correlation image analysis and image segmentation, Int. J. Remote Sens., 29, 399–423, https://doi.org/10.1080/01431160601075582, 2008.
Im, J., Jensen, J., Jensen, R., Gladden, J., Waugh, J., and Serrato, M.: Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing, Remote Sens., 4, 327–353, 2012.
Jensen, J. R. and Im, J.: Remote Sensing Change Detection in Urban Environments, in: Geo-Spatial Technologies in Urban Environments: Policy, Practice, and Pixels, edited by: Jensen, R. R., Gatrell, J. D., and McLean, D., Springer Berlin Heidelberg, Berlin, Heidelberg, 7–31, 2007.
Jewett, C. P. and Mecikalski, J. R.: Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment, J. Geophys. Res-Atmos., 118, 12649–612660, https://doi.org/10.1002/2013JD019700, 2013.
Jorgensen, D. P. and LeMone, M. A.: Vertical Velocity Characteristics of Oceanic Convection, J. Atmos. Sci., 46, 621–640, https://doi.org/10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2, 1989.
Kar, S. K. and Ha, K.-J.: Characteristic Differences of Rainfall and Cloud-to-Ground Lightning Activity over South Korea during the Summer Monsoon Season, Mon. Weather Rev., 131, 2312–2323, https://doi.org/10.1175/1520-0493(2003)131<2312:CDORAC>2.0.CO;2, 2003.
Kim, D. H. and Ahn, M. H.: Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite, Atmos. Meas. Tech., 7, 2471–2485, 10.5194/amt-7-2471-2014, 2014.
Kim, H. W. and Lee, D. K.: An Observational Study of Mesoscale Convective Systems with Heavy Rainfall over the Korean Peninsula, Weather Forecast., 21, 125–148, https://doi.org/10.1175/WAF912.1, 2006.
Kim, M., Im, J., Han, H., Kim, J., Lee, S., Shin, M., and Kim, H.-C.: Landfast sea ice monitoring using multisensor fusion in the Antarctic, GIS. Remote Sens., 52, 239–256, https://doi.org/10.1080/15481603.2015.1026050, 2015.
Kim, Y. H., Im, J., Ha, H. K., Choi, J.-K., and Ha, S.: Machine learning approaches to coastal water quality monitoring using GOCI satellite data, GIS. Remote Sens., 51, 158–174, https://doi.org/10.1080/15481603.2014.900983, 2014.
Lawrence, R. L. and Wright, A.: Rule-based classification systems using classification and regression tree (CART) analysis, Photogramm. Eng. Rem. S., 67, 1137–1142, 2001.
Li, M., Im, J., and Beier, C.: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest, GIS. Remote Sens., 50, 361–384, https://doi.org/10.1080/15481603.2013.819161, 2013.
Li, M., Im, J., Quackenbush, L. J., and Liu, T.: Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park, IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens., 7, 3143–3156, https://doi.org/10.1109/JSTARS.2014.2304642, 2014.
Liu, T., Im, J., and Quackenbush, L. J.: A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification, ISPRS J. Photogramme., 110, 34–47, https://doi.org/10.1016/j.isprsjprs.2015.10.002, 2015.
Lu, Z., Im, J., Quackenbush, L. J., and Yoo, S.: Remote Sensing-based House Value Estimation Using an Optimized Regional Regression Model, Photogramm. Eng. Remote Sens., 79, 809–820, https://doi.org/10.14358/PERS.79.9.809, 2013.
Lu, Z., Im, J., Rhee, J., and Hodgson, M.: Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data, Landscape, Urban Plan., 130, 134–148, https://doi.org/10.1016/j.landurbplan.2014.07.005, 2014.
Mecikalski, J. R. and Bedka, K. M.: Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery, Mon. Weather Rev., 134, 49–78, https://doi.org/10.1175/MWR3062.1, 2006.
Mecikalski, J. R., Bedka, K. M., Paech, S. J., and Litten, L. A.: A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation, Mon. Weather Rev., 136, 4899–4914, https://doi.org/10.1175/2008MWR2352.1, 2008.
Mecikalski, J. R., MacKenzie, W. M., Koenig, M., and Muller, S.: Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields, J. Appl. Meteorol. Climatol., 49, 521–534, https://doi.org/10.1175/2009JAMC2344.1, 2009.
Mecikalski, J. R., MacKenzie, W. M., König, M., and Muller, S.: Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance, J. Appl. Meteorol. Climatol., 49, 2544–2558, https://doi.org/10.1175/2010JAMC2480.1, 2010.
Mecikalski, J. R., Williams, J. K., Jewett, C. P., Ahijevych, D., LeRoy, A., and Walker, J. R.: Probabilistic 0–1-h Convective Initiation Nowcasts that Combine Geostationary Satellite Observations and Numerical Weather Prediction Model Data, J. Appl. Meteorol. Climatol., 54, 1039–1059, https://doi.org/10.1175/JAMC-D-14-0129.1, 2015.
Merk, D. and Zinner, T.: Detection of convective initiation using Meteosat SEVIRI: implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM, Atmos. Meas. Tech., 6, 1903–1918, 10.5194/amt-6-1903-2013, 2013.
Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., and Tomita, H.: Deep moist atmospheric convection in a subkilometer global simulation, Geophys. Res. Lett., 40, 4922–4926, https://doi.org/10.1002/grl.50944, 2013.
Morel, C. and Senesi, S.: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology, Q. J. Roy. Meteorol. Soc., 128, 1953–1971, https://doi.org/10.1256/003590002320603485, 2002.
Mueller, C., Saxen, T., Roberts, R., Wilson, J., Betancourt, T., Dettling, S., Oien, N., and Yee, J.: NCAR Auto-Nowcast System, Weather Forecast., 18, 545–561, https://doi.org/10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2, 2003.
Nyarko, B., Diekkruger, B., van de Giesen, N., and Vlek, P.: Floodplain wetland mapping in the White Volta River Basin of Ghana, GIS. Remote Sens. 52, 374–395, 2015.
Park, S., Im, J., Jang, E., and Rhee, J.: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions, Agr. Forest Meteorol., 216, 157–169, https://doi.org/10.1016/j.agrformet.2015.10.011, 2016.
Quinlan, J. R.: Data mining tools See5 and C4.5, version 2.10, available at: https://www.rulequest.com/see5-info.html (last access: 10 February 2016), 2015.
Rhee, J., Im, J., Carbone, G. J., and Jensen, J. R.: Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas, Remote Sens. Environ., 112, 3099–3111, https://doi.org/10.1016/j.rse.2008.03.001, 2008.
Rhee, J., Park, S., and Lu, Z.: Relationship between land cover patterns and surface temperature in urban areas, GIS. Remote Sens., 51, 521–536, https://doi.org/10.1080/15481603.2014.964455, 2014.
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008.
Roberts, R. D. and Rutledge, S.: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data, Weather Forecast., 18, 562–584, 2003.
Rosenfeld, D., Woodley, W. L., Lerner, A., Kelman, G., and Lindsey, D. T.: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase, J. Geophys. Res-Atmos., 113, D04208, https://doi.org/10.1029/2007JD008600, 2008.
Schmit, T. J., Gunshor, M. M., Menzel, W. P., and Gurka, J. J.: Introducing the next-generation Advanced Baseline Imager on GOES-R, B. Am. Meteorol. Soc. 86, 1079–1096, 2005.
Sieglaff, J. M., Cronce, L. M., Feltz, W. F., Bedka, K. M., Pavolonis, M. J., and Heidinger, A. K.: Nowcasting Convective Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends, J. Appl. Meteorol. Climatol., 50, 110–126, https://doi.org/10.1175/2010JAMC2496.1, 2011.
Siewert, C. W., Koenig, M., and Mecikalski, J. R.: Application of Meteosat second generation data towards improving the nowcasting of convective initiation, Meteorol. Appl., 17, 442–451, https://doi.org/10.1002/met.176, 2010.
Sobajima, A.: Rapidly Development Cumulus Areas Derivation Algorithm. Japan Meteorological Agency Algorithm Theoretical Basis Document, Meteorological Satellite Center, Tokyo, Japan, 2012.
Sohn, B. J., Ryu, G. H., Song, H. J., and Ou, M. L.: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements, Mon. Weather Rev., 141, 3873–3888l, 2013.
Song, H. J. and Sohn, B. J.: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study, Mon. Weather Rev., 143, 363–382, 2015.
Torbick, N. and Corbiere, M.: Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades, GIS. Remote Sens., 52, 746–764, https://doi.org/10.1080/15481603.2015.1076561, 2015.
Trier, S. B., Chen, F., and Manning, K. W.: A Study of Convection Initiation in a Mesoscale Model Using High-Resolution Land Surface Initial Conditions, Mon. Weather Rev., 132, 2954–2976, https://doi.org/10.1175/MWR2839.1, 2004.
Tu, J. V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, J. Clin. Epidemiol., 49, 1225–1231, https://doi.org/10.1016/S0895-4356(96)00002-9, 1996.
Walker, J. R., MacKenzie, W. M., Mecikalski, J. R., and Jewett, C. P.: An Enhanced Geostationary Satellite–Based Convective Initiation Algorithm for 0–2-h Nowcasting with Object Tracking, J. Appl. Meteorol. Climatol., 51, 1931–1949, https://doi.org/10.1175/JAMC-D-11-0246.1, 2012.
Walker, J. R. and Mecikalski, J. R.: Algorithm theoretical basis document (ATBD) for convective initiation. NOAA NESDIS Center for Satellite Applications and Research, available at: http://www.nsstc.uah.edu/SATCAST/docs/GOES-R AWG ATBD Aviation ConvectiveInitiationv2.0.pdf (last access: 10 February 2016), 2011.
Wang, C.-C., Chen, G. T.-J., and Carbone, R. E.: A Climatology of Warm-Season Cloud Patterns over East Asia Based on GMS Infrared Brightness Temperature Observations, Mon. Weather Rev., 132, 1606–1629, https://doi.org/10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2, 2004.
Weckwerth, T. M. and Parsons, D. B.: A Review of Convection Initiation and Motivation for IHOP_2002, Mon. Weather Rev., 134, 5–22, https://doi.org/10.1175/MWR3067.1, 2006.
Vondou, D. A., Nzeukou, A., and Kamga, F. M.: Diurnal cycle of convective activity over the West of Central Africa based on meteosat images, Int. J. Appl. Earth Obs. Geoinf., S58–S62, 2010.
Yoo, S., Im, J., and Wagner, J. E.: Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY, Landscape. Urban Plan., 107, 293–306, https://doi.org/10.1016/j.landurbplan.2012.06.009, 2012.
Zinner, T., Mannstein, H., and Tafferner, A.: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data, Meteorol. Atmos. Phys. 101, 191–210, https://doi.org/10.1007/s00703-008-0290-y, 2008.
Zuidema, P.: Convective Clouds over the Bay of Bengal, Mon. Weather Rev., 131, 780–798, https://doi.org/10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2, 2003.
Short summary
Deterministic and probabilistic CI detection models based on decision trees (DT), random forest (RF), and logistic regression (LR) were developed using Himawari-8 AHI data obtained over the Korean Peninsula. We used a total of 12 interest fields including time trends to develop the models. We identified contributing variables for CI detection. DT showed a higher hit rate, while RF produced a higher critical success index. The mean lead times by the four models were in the range of 20–40 min.
Deterministic and probabilistic CI detection models based on decision trees (DT), random forest...