Articles | Volume 10, issue 7
https://doi.org/10.5194/amt-10-2485-2017
https://doi.org/10.5194/amt-10-2485-2017
Research article
 | 
14 Jul 2017
Research article |  | 14 Jul 2017

Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics

Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue

Related authors

Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021,https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021,https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones
Takehiko Nose, Takuji Waseda, Tsubasa Kodaira, and Jun Inoue
The Cryosphere, 14, 2029–2052, https://doi.org/10.5194/tc-14-2029-2020,https://doi.org/10.5194/tc-14-2029-2020, 2020
Short summary
Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019,https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary
Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system
Takuya Nakanowatari, Jun Inoue, Kazutoshi Sato, Laurent Bertino, Jiping Xie, Mio Matsueda, Akio Yamagami, Takeshi Sugimura, Hironori Yabuki, and Natsuhiko Otsuka
The Cryosphere, 12, 2005–2020, https://doi.org/10.5194/tc-12-2005-2018,https://doi.org/10.5194/tc-12-2005-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023,https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary
Evaluation of In-situ observations on Marine Weather Observer during the Typhoon Sinlaku
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-120,https://doi.org/10.5194/amt-2023-120, 2023
Revised manuscript accepted for AMT
Short summary
How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023,https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
Najmeh Kaffashzadeh
Atmos. Meas. Tech., 16, 3085–3100, https://doi.org/10.5194/amt-16-3085-2023,https://doi.org/10.5194/amt-16-3085-2023, 2023
Short summary
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-63,https://doi.org/10.5194/amt-2023-63, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Ciesielski, P. E., Johnson, R. H., and Wang, J: Correction of humidity biases in Vaisala RS80-H sondes during NAME, J. Atmos. Ocean. Tech., 26, 1763–1780, https://doi.org/10.1175/2009JTECHA1222.1, 2009.
Ciesielski, P. E., Chang, W.-M., Huang, S. -C., Johnson, R. H., Jou, B. J.-D., Lee, W.-C., Lin, P.-H., Liu, C.-H., and Wang, J.: Quality-controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections, J. Atmos. Ocean. Tech., 27, 1802–1821, https://doi.org/10.1175/2010JTECHA1481.1, 2010.
Ciesielski, P. E., Yu, H., Johnson, R. H., Yoneyama, K., Katsumata, M., Long, C. N., Wang, J., Loehrer, S. M., Young, K., Williams, S. F., Brown, W., Braun, J., and Van Hove, T.: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections, J. Atmos. Ocean. Tech., 31, 741–764, https://doi.org/10.1175/JTECH-D-13-00165.1, 2014.
Fujita, M., Kimura, F., Yoneyama, K., and Yoshizaki, M.: Verification of precipitable water vapor estimated from shipborne GPS measurements, Geophys. Res. Lett., 35, L13803, https://doi.org/10.1029/2008GL033764, 2008.
Download
Short summary
The model RS92 radiosonde manufactured by Vaisala Ltd. is now being replaced with a successor model, the RS41, and we need to clarify accuracy differences between them for a variety of research. For this purpose, 36 twin-radiosonde flights were performed over the oceans from the Arctic to the tropics. Basically the differences between the RS41 and RS92 were smaller than the nominal combined uncertainties of the RS41; however, we found non-negligible biases in relative humidity and pressure.